
What Make Long Term Contributors: Willingness and Opportunity in OSS

Community

Minghui Zhou

School of Electronics Engineering and Computer Science, Peking University

Key Laboratory of High Confidence Software Technologies, Ministry of Education

Beijing 100871, China

zhmh@pku.edu.cn

Audris Mockus

Avaya Labs Research

233 Mt Airy Rd, Basking Ridge, NJ

audris@avaya.com

Abstract—To survive and succeed, software projects need
to attract and retain contributors. We model the individual’s
chances to become a valuable contributor through her capacity,
willingness, and the opportunity to contribute at the time of
joining. Using issue tracking data of Mozilla and Gnome, we
find that the probability for a new joiner to become a Long
Term Contributor (LTC) is associated with her willingness and
environment. Specifically, during their first month, future LTCs
tend to be more active and show more community-oriented
attitude than other joiners. Joiners who start by commenting
on instead of reporting an issue or ones who succeed to get
at least one reported issue to be fixed, more than double
their odds of becoming an LTC. The micro-climate with a
productive and clustered peer group increases the odds. On
the contrary, the macro-climate with high project popularity
and the micro-climate with low attention from peers reduce the
odds. This implies that the interaction between individual’s
attitude and project’s climate are associated with the odds
that an individual would become a valuable contributor or
disengage from the project. Our findings may provide a
basis for empirical approaches to design a better community
architecture and to improve the experience of contributors.

Keywords-Long Term Contributor; open source; willingness;
opportunity; interaction of person and environment

I. INTRODUCTION

Ancient strategist Sun Tzu claimed that to succeed in

battle it is crucial to gain people’s support. The same applies

to software projects, because their success in the marketplace

is determined by their ability to attract the support from

contributors. “OSS doesn’t work without contributions from

the community”, as an interviewee for this study commented.

Therefore, “An open source community’s volunteer contrib-

utors should be a treasured resource”1.

Understanding how to maintain, sustain, and grow the

contributor community is critical for the survival and success

of any open source project. For example, Wikipedia intro-

duced Love button to make it easy for peers to “encourage

new editors to stay and to contribute despite the fact that

their contributions often get deleted and derided”2. In partic-

1http://eaves.ca/2011/04/07/developing-community-management-
metrics-and-tools-for-mozilla/

2http://idle.slashdot.org/story/11/06/27/1231259/Wikipedia-Adds-
WikiLove-For-Newbie-Editors

ular, Long Term Contributors (LTCs) are crucial for project’s

success, because it takes a long time for developers to be-

come productive and even more time to be able to do central

tasks, e.g., to mentor newcomers [1]. Furthermore, individual

and group job enrichment efforts may be more successful

when attention is directed to initial task experiences [2].

Consequently, the understanding of what affects the chances

that a new contributor will become an LTC would, therefore,

facilitate projects’ success by helping projects train and

retain developers capable of solving critical tasks.

Borrowing a framework from management science[3],

which uses three interactive dimensions of capacity (e.g.,

ability), willingness (e.g., attitude), and opportunity (e.g.,

environment) to account for the work performance of indi-

viduals, we model the probability that a new joiner would

become a valuable contributor (an LTC)3 through her will-

ingness and opportunity to contribute at the time of joining.

Issue tracking systems record the history of how people

initiate and complete various tasks in software projects.

We, therefore, assume that such detailed data would contain

traces that reflect people’s ability, attitude, and environment

and use issue tracking data to model willingness and op-

portunity in two OSS projects – Gnome and Mozilla. We

gathered and inspected artifacts recorded in the bug tracking

system, in historic snapshots of projects’ web pages, and

in published literature. We used these sources to model a

participant’s willingness and capacity through the activities

she is willing and competent to take on (the number and

type of tasks she starts with) and the effort she is willing

to provide (the value of her activities to the product and

community, e.g., the fraction of reported issues that were

ultimately fixed). We model opportunity through environ-

ment’s macro-climate shared among all participants and

micro-climate unique for a person. In particular, project’s

status such as popularity and relative sociality (RS) 4 con-

3A participant who stays with the project for at least three years and is
productive (above 10-th percentile of changes per year).

4A geometric average over all project’s participants of the ratio of the
number of individual’s workflow peers (social aspect) to the number of
tasks that individual participates in (technical aspect) [4].

978-1-4673-1067-3/12/$31.00 c© 2012 IEEE ICSE 2012, Zurich, Switzerland516

stitute measures of macro-climate, while the initial size of

peer group and actions of peers (e.g., their performance, their

social clustering, or their attention to her) represent micro-

climate. We fit a logistic regression model 5 to quantify the

relationships between these predictors and the probability

that a new contributor would become an LTC. The results

show the probability to be associated with the contributor’s

attitude and environment. Specifically, at the time of joining,

future LTCs tend to take more active role and show more

community-oriented attitude than other joiners. They also

receive more attention from the community and encounter

more experienced peers.

The main contributions of this study include the quantifi-

cation of the contributor’s willingness and her environment,

in particular, measures of her activities and the amount of

effort she is willing to contribute, and measures of micro-

and macro-climate. The model quantifying the relationships

among attitude, environment, and the odds of becoming

a long-term contributor has a potential to significantly

improve software practice. For example, projects might

adjust their practices to attract and retain contributors by,

for example, devoting more attention to new contributors

who start by reporting an issue. On the other hand, the

newcomers who want to be welcomed by the community

would benefit by focusing on the quality of their issue

reports and on the community-oriented initial interactions.

To facilitate the reproduction of the study and of the pro-

posed measures in other contexts we provide the data we

retrieved and the scripts we wrote at http://www.passion-

lab.org/projects/developerfluency.html.

In Section II we review related work. The project context

and the methodology are described in Section III and Sec-

tion IV presents our findings. We consider the limitations in

Section V and conclude in Section VI.

II. RELATED WORK

Enormous effort over past decades was spent in attempts

to unravel the possible relationships between job perfor-

mance and its hypothesized antecedents in management

science, cognitive science, and psychology. For example,

it is widely believed that the characteristics responsible

for exceptional performance are innate and are genetically

transmitted [5]. However, Ericsson et al [6] showed that

many characteristics once believed to reflect innate talent are

actually the result of intense practice extended for a mini-

mum of 10 years. Also, environment, for example, access

to teachers, training material, and training facilities, rather

than talent, are found to be the important factors determining

the initial onset of training and ultimate performance [6].

Since Hawthorne studies [7], researchers have examined the

effect on performance of formal and informal groupings,

5Logistic regression is a common way to model proportions where the
proportion is related to predictors via a logistic function.

peer pressure, roles, norms, cohesiveness, goals, rewards,

feedback, task characteristics, and other variables.
The most obvious conclusion from these varied ap-

proaches is that the variables known to influence individual

task performance are numerous and varied. To summarize

the existing theories, Blumberg and Pringle [3] proposed a

three-dimensional-interaction model of work performance,

in which capacity, willingness, and opportunity are recog-

nized as three interacting dimensions that account for the

performance at the individual level. Capacity refers to the

physiological and cognitive capabilities that enable an indi-

vidual to perform a task effectively, including ability, skills,

level of education, and endurance. The psychological and

emotional characteristics that influence the degree to which

an individual is inclined to perform a task comprise the

willingness dimension including motivation, personality, and

attitude. Opportunity consists of the particular configuration

of the field of forces surrounding a person and her task that

enables or constrains that person’s task performance and that

are beyond the person’s direct control.
In this study we borrow this three-dimensional framework

for one reason – ability, motivation/attitude and environment

are the most popular concepts used by scholars in software

engineering who have been at work attempting to predict de-

velopers’ performance. For example, Curtis [8] claimed that

the individual differences among project personnel account

for the largest source of variation in project performance.

Couger and Zawacki [9] identified how differences in the

motivational structure of programmers interacted with the

kinds of jobs they were assigned. They found that program-

mers had higher needs for personal growth and personal

development than those in any other job category measured.

Environmental factors affecting developer’s performance in-

clude organization variability [10], coworkers [11], and com-

munication media [12]. Studies of newcomer experiences by

Dagenias et al. [13] identified early experimentation, inter-

nalizing cultures, and progress validation as three primary

factors facing developers joining new projects. Earlier we

have discovered [4] that the project’s relative sociality when

a developer joins impacts the probability she will become a

long term contributor in that project.

In summary, ability, attitude, and environment comprise

the three dimensions that, in literature, are often suggested

to account for the developer’s performance. However, the

quantification of these relationships in software development

contexts has been elusive.

III. METHODOLOGY

In this study we perform qualitative and quantitative

analysis of two OSS ecosystems, Gnome and Mozilla6. A

qualitative investigation is used to understand joiner behavior

and to help design suitable measures of attitude and envi-

ronment. Gnome and Mozilla have been extensively studied

6Both contain a number of sub-projects

517

Table I
PROJECTS

Project Years MLOC 7 Domain Cntrbtrs

Gnome 10 7.9 UI 156, 332
Evolution .8 Calendar&Mailbox 21, 041
Nautilus .1 File manager 17, 430
Epiphany .1 Browser 3, 716
Mozilla 12 20 UI 187, 333
Firefox 5.3 Browser 47, 690
Thunderbird 1.1 Mailbox 12, 993
Calendar .8 Calendar 4, 130

in the past. We, therefore, feel an obligation not to interfere

with the work of project participants, to the extent we can

rely on the results obtained in prior studies. Consequently,

we chose to base our qualitative study primarily on recorded

artifacts in the issue tracking system, project web pages, the

existing literature, and the relevant websites. For questions

where we could not obtain needed information from existing

sources, we conducted a small survey. Most of information

in open source projects is public and we, therefore, feel that

such primarily record-based qualitative investigation would

be able to capture the essential features of the investigated

phenomena.

Our quantitative study analyzes issue workflows in order

to establish the relationship between contributors’ probabil-

ity of becoming LTCs and the factors that measure their

capacity, willingness, and environment.

We start from describing the project context in Sec-

tion III-A, introduce the qualitative study in Section III-B,

and the workflow analysis in Section III-C.

A. Context

Gnome and Mozilla implement user interface functional-

ity, and have more than 10 years of history, as described in

Table I. Some major sub-projects in each ecosystem are also

shown in the table. Evolution is the largest Gnome project,

and Firefox is the largest of Mozilla’s project. Note, that

both ecosystems have a browser and a mail client.

B. Qualitative Study

For reasons noted above, we chose to do our qualitative

study primarily based on digital records via the following

procedure:

• We read the existing literature, particularly about

Gnome and Mozilla, e.g., [14], [15], [16], to understand

the project context and practices;

• We inspected the project web site looking for the

project-related information, for example, the standard

workflow of resolving issues. We also looked at the sub

project web-pages, searched for relevant information,

e.g., the practices used to report and resolve an issue;

7data from ohloh.net

• We sampled 40 people (20 non-LTCs and 20 LTCs)

from each ecosystem, and carefully read the defects

they were involved in, particularly at the time of

joining, to understand the joining process and joiner

experiences.

We also wanted to get a broader understanding of how

people think of the factors influencing individual perfor-

mance in software projects. We, therefore, communicated

with people (we know) from different companies including

Google, Microsoft, Tengxun (a big Internet company in

China), and Kingrain (a small software company with 13

developers in China). We asked the following question:

• What is the factor that you think has the most influence

on the individual’s performance?

After we obtained the answer, we asked the following

question eliciting response about the factors not mentioned

in the first answer:

• Do you think environment/ability/willingness affect in-

dividual’s performance as well?

Finally, we still felt the need for an independent reality

check and sent a small survey to a few participants. We

randomly selected eight people from each project and sent

them emails containing issues they reported and the follow-

ing questions:

• What motivated you to report/comment on these issues?

Did you report because of your personal interest or

because of the business requirements you served at that

time?

• Are these the only issues you have experienced? If not,

why did you report only these ones?

We obtained one reply from each project, (five emails

couldn’t be delivered) giving us the response rate of two

out of the eleven delivered surveys or 18%.

C. Issue Workflow Analysis

We obtained issue tracking data of Gnome and Mozilla.

Traditional software projects use an Issue/MR (Modification

Request) system to track defects, enhancements, and other

project tasks 8. The primary users are developers and testers.

Customer issues are typically tracked in a separate system

and only a very small subset that requires code changes,

may be copied/imported into the system used by software

developers. In contrast, in OSS software projects the issue

tracking systems not only track tasks for developers and

testers, but also track issues raised by end users and by

down-stream projects. Each issue/MR has a history, from

the time somebody reported it until the time somebody

closed it (it also may remain open at the time of the study).

During that period a sequence of events takes place: MR is

created, assigned, resolved, tested, and closed. It may also

be reassigned, its attributes changed, comments, debugging

8http://en.wikipedia.org/wiki/Issue tracking system

518

traces, etc added. Each such event has an associate date,

time, the type of action, and the email/name of the developer

performing the action. We consider each such transition

as an artifact-mediated communication between two of the

adjacent performers.

Crawlers were written to obtain the MR histories and

details from their web pages. Both Gnome and Mozilla use

Bugzilla to track issues. We obtained information for all

issues in XML format as well as the activity history for

each project from all the sources in January, 2011. There

are not many issues prior to 1998 in Mozilla and very few

prior to 1999 in Gnome, hence we removed data before 1998

in Mozilla and before 1999 in Gnome. Overall 158,244 user

ids and 517,801 MRs were in Gnome, and 200,655 user ids

and 620,511 MRs were in Mozilla. These MR traces record

people’s actions related to issue resolution, and therefore, are

likely to reflect people’s characters. The climate of a project

is determined by participants’ behavior, therefore, the same

traces are also likely to reflect the climate of the project

at any specific time. We investigate the workflow of people

resolving issues to measure people’s capacity, willingness

and opportunity.

In general, people follow a protocol to resolve issues,

e.g., Gnome defines the standard steps of triaging on its

website 9. According to it, an issue is reported (born) in an

UNCONFIRMED state, until it is confirmed, and its state

is changed to NEW (or, it may be immediately resolved

and the state is changed to RESOLVED). When additional

information from the issue reporter is needed to proceed

further in fixing this issue, the state would be changed to

NEEDINFO. Later this issue would be added to an assignee

and needs be resolved. The transition from one state to

another may involve a change of actors. Newcomers take

different actions because of their capacity and willingness, as

described in later sections. Notice, not everybody is allowed

to modify the state of an issue. We have verified that a

new contributor is allowed to modify the state only for the

issues she reports, but she is able to comment on any issue.

Mozilla’s triage process is similar 10. However, in practice

the process is a bit different. Here we focus on determining

the roles people play in the issue resolution process.

Each “RESOLVED” issue has a resolution, e.g., FIXED,

DUPLICATE, INCOMPLETE, INVALID, or WONTFIX.

The resolution types vary between Gnome and Mozilla,

e.g., Mozilla resolution EXPIRED is used in similar cases

as OBSOLETE in Gnome. As the name suggests, FIXED

means the bug is fixed, DUPILICATE means the reported

bug is a duplicate of some other bug, INCOMPLETE means

the reported information is not sufficient to reproduce the

bug, INVALID means this is a invalid report, and WONTFIX

means the reported issue is not relevant enough to be fixed.

9http://live.gnome.org/Bugsquad/TriageGuide
10https://bugzilla.mozilla.org/page.cgi?id=fields.html

Issues with resolution FIXED represent 32% of Gnome’s

and 36% of Mozilla’s resolved issues. DUPLICATE repre-

sent 36% and 24%, and INCOMPLETE 15% and 6% of all

resolved issues.
IV. RESULTS

Contributors interact with their environment when they

join the project. That interaction is mediated by their ca-

pacity and willingness and it affects the odds of them

becoming LTCs. We start from quantifying contributor’s

capacity and willingness in Section IV-A, continue with

measuring contributors’ environment in Section IV-B, and

conclude with fitting a logistic regression model of the

probability that a newcomer will become an LTC in IV-C.

A. Measuring Capacity and Willingness

Software development is a knowledge intensive activ-

ity [17], and the almost universal assumption of person-

nel managers is that personality has a marked effect on

the performance of employees [3]. As an employee from

Google commented in our interviews, “basically, personality

determines everything”. And “environment is similar for

everyone, attitude is a part of personality”. How about indi-

vidual ability? “We are Google, never lack talented guys”.

However, another interviewee (a manager from Kingrain)

said “ability accounts for everything”, because his best em-

ployee is substantially more competent than the remaining

employees. As Blumberg and Pringle [3] clarified, person-

ality, attitude, and motivation are variables of “willingness

to perform”, while ability, experience, and intelligence are

variables of “capacity to perform”. In this section we mea-

sure the capacity and willingness of newcomers to the OSS

project, and try to establish if the contributor’s willingness

measured at the time they join the project varies between

participants who will and who will not become LTCs.

Only 2.12% of Gnome and 0.90% of Mozilla joiners be-

come LTCs. And in both projects, more than 70% of contrib-

utors are one-time-contributors (OTCs, 70% in Mozilla, 78%

in Gnome). These contributors have only a single interaction

(e.g., reporting an issue or commenting on an issue) recorded

in the issue tracking system. This high level of peripheral

participation is consistent with the finding that more than

three-quarters of the nearly 13 thousand contributors Lerner

and Tirole [18] considered, made only one contribution. We

sampled 20 OTC and 20 LTC participants from each project.

For ethical reasons, we omitted the participants’ names and

represent them using numeric aliases, with 1-20 representing

OTCs and 21-40 representing LTCs.

We manually inspected all the issues reported by OTCs,

and observed two types of behavior. Both of these behaviors

were exhibited by contributors who appear to be end users.

Some were eager contributors who worked thoroughly and

tried to help. For example, gnome-7 reported: “I’ve been

trying to use libxml++ ... However I found that there

are two rather large memory leaks”. He even committed

519

some attachments to help fix, “Please let me know if these

issues will be addressed”. Some people proposed specific

requirements. For example, mozilla-15 asked to implement

a new feature, “I’m writing to request support for JIF be

added to mozilla”. For this he was willing to help – “I

can provide some help for this, but I would like to know

if the mozilla developers are receptive to this”. Another

group appeared to be not devoting as much attention to

the issues they reported. For example, gnome-12 reported

two issues according to the required format but without

any extra comments. Furthermore, he/she didn’t respond to

request for additional information: “Could you please help

fixing this by installing some debugging packages...” (the

issue was resolved with the state INCOMPLETE). These are

some of the reasons to believe that these people reported

issues (and committed fixes) because they were end users

and they were trying to accomplish something relevant with

the OSS product they were using. At the same time, they

might have found the issues by accident (because they were

users), and they were interested enough to report it but were

not motivated enough or had no opportunity to contribute

more.

For the sampled LTC group, the average number of MRs

per person was over 100 (over the considered period, see

Section III-C). We, therefore, examined only a subset of their

issues, in particular, issues in their first month after joining.

Notably, they all were more active as compared to the OTC

group: made more comments, and often spent more effort

on their issue reports, for example, by including a patch. For

example, mozilla-25 reported his first issue on Oct 24, 2007.

Based on the comment on that issue: “Reporter, could you

reproduce on FF3 RC?”, we assume that he was not known

by the community at that time. Less than one month later,

on Nov 21, mozilla-25 created attachments for a couple of

issues. Apparently, he already won trust from the existing

developers by, perhaps, submitting good quality patches,

because a developer applied to obtain an SVN account for

mozilla-25 the same day (through Bug x: Create localizer

LDAP/SVN account for mozilla-25). A similar example in

Gnome is gnome-30, who reported his first issue on Mar

20, 2004. This report was committed with a couple of extra

attachments showing the details needed to understand and

reproduce the issue, and the issue resolution was “FIXED”.

Another example is gnome-33, whose first report was “Patch

to get access attributes for nested class/struct/union”. In

other words, the first action he did is to commit a patch in the

form of an issue report, and it appears to have been useful,

because the responsible developer responded – “I’ll include

it in the first CVS release”. It is worth noting that four people

from the LTC sample (4/40 = 10%) appear to have been in

the development team from the very beginning. For example,

the first participation of mozilla-22 is a comment: “Checked

in code for spec-compliant implementation of webclient on

Solaris . . . ”

In summary, all OTCs and most LTCs appear to be prod-

uct users at the time of joining. The two survey responses

were “I use a lot of Open Source software both at work

and at home (including Mozilla)”, and “Around that time,

I did the final move away from Windows and replaced

Windows on my desktop PC at home (with Gnome)”. This

observation is consistent with the findings in project Fedora:

“74% said they were first users of Fedora and then became

contributors to the project”11. Moreover, both groups show

ability and willingness to contribute — out of millions of

Mozilla/Gnome users, only a very small proportion is going

to contribute, no matter if the contributions are “in the form

of bug reports, suggestions or occasionally code contribu-

tions”. Also, quoting from our survey: “I did report the

issues because of my personal interest”, “as a technically

knowledgeable user I feel a responsibility to give back when

I am able”.

However, what are the differences among contributors, in

particular, between OTCs and LTCs? The evidence appears

to favor willingness, i.e., the extent to which people are

getting involved in helping the project. First we consider

the number of tasks, e.g., number of comments she makes.

These comments might be an interpretation for a confusing

report, or suggesting a possible solution, or explaining the

benefits of a proposed new feature. We assume that the num-

ber of tasks primarily reflects the skills the participant has

accumulated prior to joining the project, i.e., her capacity,

but also, partly, how willing she is to contribute.

There are two other aspects representing the extent of

participation — what type of tasks a participant takes on and

how much effort she provides. The activities a participant

undertakes, e.g., attaching the screenshot when reporting an

issue is a sign that she has a community-friendly attitude.

Starting from a comment instead of reporting an issue also

reflects such an attitude — it means she is intentionally

getting involved, perhaps by first finding a similar issue

and commenting on it instead of simply reporting an issue

she encounters as a user. On the contrary, reporting an

issue through a crash-reporting tool such as Bug-Buddy is

extremely easy and does not demonstrate a great amount

of desire to get involved. When an application using the

GNOME libraries crashes, Bug-Buddy generates a stack

trace and invites the user to submit the report. This requires

little effort from the user, simply filling a few fields and

clicking “Submit” button. In contrast, alternative way of

reporting an issue involves applying for an account for

Gnome Bugzilla, creating a new issue report, and filling

in the template that includes steps needed to reproduce

the bug. In Gnome, less than 1% of the joiners, who had

their first issue reported via Bug-Buddy, eventually became

11http://www.cyber-anthro.com/beta-an-exploration-of-
fedora%E2%80%99s-online-open-source-development-community/

520

LTCs, while more than 4% of the joiners who started with

a Bugzilla report became LTCs.

Even though contributions appear to be universally valued

in open source projects, the following statistics casts doubt

on that assumption, or, at least, suggests that some contribu-

tions provide much more value than others. Approximately

90% of the OTC reports ended up without any change (i.e.,

without resolution FIXED, 91% in Mozilla, and 90% in

Gnome), of which a big proportion were duplicates (47%

in Mozilla and 35% in Gnome). However, for the defects

reported by LTCs, a high proportion were FIXED (51% in

Mozilla, 52% in Gnome), and approximately 15% in both

projects were duplicates.

This analysis shows how the issue resolution types can

be used to measure the value a contributor provides and

to reveal her attitude. Specifically, fixed issues help improve

the product quality and might enhance community morale by

showing some accomplishment. Meanwhile, the remaining

issues might waste the limited time of the few core devel-

opers.

On the other hand, when a contributor encounters an issue,

if she spends more time to search for similar issues and the

relevant resolutions, the more likely she is to find exactly the

same or similar issue. There is less chance, therefore, that the

issue will end up with DUPLICATE resolution. The same

argument applies for issues with resolution INCOMPLETE

— responding and providing enough information for others

to reproduce the issue would make it more likely that the

issue will be fixed. In other words, if a person puts enough

effort, the issues she reports have more chances to be fixed

and, thus, improve the quality of the product. Consequently,

the fraction of reported issues that are fixed (in the first

month from joining) is an indication of effort a contributor

provides. Therefore:

Observation 1: A contributor’s willingness (and capac-

ity), can be measured by the number and types of tasks (e.g.,

reporting or commenting on an issue) she participates in and

by the effort she provides to resolve these tasks.

B. Measuring Environment

Early literature on job performance predictions did not

consider the environment: “since performance is ultimately

an individual phenomenon, environmental variables influ-

ence performance primarily through their effect on the

individual determinants of performance – ability and/or

motivation” [19].

However, available evidence indicates that certain envi-

ronmental factors beyond the individual’s control play a far

stronger role influencing her performance than was generally

acknowledged then [3]. The more important of these involve

what is known in normative decision theory as states of

nature and actions of others, and suggest a clear recognition

that, in addition to social, psychological, and physiological

determinants, behavior (performance) also depends on the

help or hindrance of uncontrollable events and actors in

one’s environment.

In our case we separate two aspects of the environment:

macro-climate and micro-climate to account for states of

nature and actions of others. Macro-climate represents the

overall project environment that is the same for everybody

in the project. Micro-climate represents the conditions that

each individual encounters and varies among participants.

We start from measuring macro-climate. Based on the

literature and our experiences, product popularity, project

task density and project sociality are important elements.

The market value of a product comes from its usage.

In other words, the number of users (users) reflects the

product’s market proceeds, that will affect the funding

(tools, equipment, materials, supplies, and pay) for the

project and the degree of interest people would devote to

it. Consequently, it will likely affect the contributors’ stay

with the project. We measure project popularity via its

user population each month. For example, Firefox is the

primary product in Mozilla and we use its user base as

proxy for Mozilla user base. We obtained the user population

by multiplying the market share of Firefox12 by the total

number of Internet users13. Project task density describes

how much work is done in the project, and we measure it

by the number of active MRs each month (numMR). This

aspect of the macro-climate indicates whether the project

is active and whether the participants have high workloads.

Project sociality represents project’s social climate and we

could measure it by the participation density, i.e., number of

participants each month (newJoiner), or relative sociality

(RS) 4. Figure 1 shows the evolution of macro-climate

components in Mozilla. We were able to obtain Internet user

estimates starting from Dec, 2000. Figure 1 also marks the

calendar times of important releases of Firefox, e.g., in Jan,

2010, Firefox 3.6 was released. We have divided the user

numbers for each month by the highest number of users

over the entire period. Thus, this variable ranges in value

between zero and one. Notice, in order to present the curves

on a similar scale, we normalized each, e.g., by dividing

newJoiner by 50, as shown in the legend of the chart.

The project’s popularity grows from the start of the project,

because Internet user population grew and Firefox share has

increased. The task density is high when the project is close

to its release date, and participant density is high when the

task density is high.

These components of macro-climate are the same for all

project participants at a particular time. Person’s micro-

climate may be characterized with the following Chinese

proverb: “He who stays near vermilion gets stained red, and

he who stays near ink gets stained black”. We, therefore,

consider people in her workflow network, i.e., people she

12http://en.wikipedia.org/wiki/Usage share of web browsers
13http://www.internetworldstats.com/stats.htm

521

0
20

40
60

80
10

0

nu
m

be
r

2000−12−01 2004−03−31 2007−07−31 2010−11−29

newJoiner/50

numMR/100

(users/max)*100

RS*100

Mozilla0.6

Mozilla1.0

Phoenix0.1

Firefox1.0

Firefox1.5

Firefox2 Firefox3

Firefox3.5

Firefox3.6

Figure 1. Macro-climate in Mozilla

interacts with, to create a unique environment for her. In

other words, the characters or actions of these people, and

her relationship with them, constitute the micro-climate for

this person. We chose the initial size of a participant’s social

group, their productivity, their social clustering, and the

attention they give to her as measures of the micro-climate.

The size of a person’s workflow peer group, i.e., the

number of peers in her workflow network, is primarily

determined by her own actions. The more issues she is

involved in, the more likely she will meet more people.

But the actual act of contribution is associated with the

person’s accumulated ability and willingness to contribute.

At the same time, her peers constitute her social working

conditions. According to [20], we assume that if a person

has more peers, she is more likely to attach to the project,

therefore she is more likely to become an LTC. On the other

hand, the performance of her peers is likely to affect her

performance, as in an old saying: “a cat gets stronger with a

tiger.” For example, Mockus [21] found that more productive

mentors lead to more productive followers.

We consider the social clustering to be the amount of

overlap among the workflow networks of peers. For exam-

ple, Contributor Alice has two peers, Dragon and Tiger, and

Dragon meets Lion and Bear, Tiger meets Lion and Deer,

the sum of Alice’s two peers’ network sizes is 3 + 3 = 6,
but the size of the joint network is 4 (because Lion and

Alice are counted twice), therefore her social clustering

is 6−4
4 . The underlying assumption is that if a person’s

peers have more in common (share more colleagues), it

is more likely that they have similar project experiences

and share similar values. The new participant, hence, is

less likely to get confused by a variety of behaviors and

value systems she observes. Furthermore, more clustered

peer group is more likely to understand and trust each other,

and that, in turn, might create a better environment for a

newcomer to learn and to become more effective. It might

also increase her work satisfaction and the willingness to

stay. For example, Mayer [20] found the willingness to

trust others was significantly related to the behavior and

performance of individuals.

Humans need attention from other people, and develop-

ers are no exception, notwithstanding common stereotypes.

Perhaps, the more attention a newcomer could obtain from

the existing project members, the more likely she will

stay with the project for a long time. We measure the

amount of attention through the duration of time between

the newcomer’s first action until somebody responds. The

response delay that is too short may not bode well in terms

of attention. A very short response may imply that the

responder did not take the issue seriously or did not inspect

it carefully but just replied with a canned template to save

time, e.g., “Thanks for taking the time to report this bug.

This bug report isn’t very useful because it doesn’t describe

the bug well.” In these circumstances the reporter might feel

under-appreciated and stop contributing.

Therefore:

Observation 2: A contributor’s environments may be

measured via macro- and micro-climate. Macro-climate rep-

resents environment shared among participants, and consists

of project popularity, project task density and project social-

ity. Micro-climate represents environment unique for each

person and consists of the initial size of peer group, their

productivity, their social clustering, and the attention they

devote to this new participant.

C. The Chances of an Individual’s Success

We investigate the influence of the ability, willingness,

and environment on the chances of an individual’s success

in the project by fitting a logistic regression model specified

in Equation 1 with 125,665 observations in Gnome and

130,471 observations in Mozilla. The response is the indica-

tor of a new participant becoming an LTC and the predictors

include measures of her ability, willingness, and environment

described above (Notice not all attributes are presented

because of the correlation, e.g., project task density is

heavily correlated with RS). Each observation represents one

project participant, with the predictors calculated over her

first month from joining shown in Table II. The predictors

that require more explanation are discussed below.

We operationalized the size of peer group (nPeer) in two

ways. The first approach counts the number of other partic-

522

ipants she encounters in her first month’s workflow. Second

approach considers the number of participants encountered

by her peers. Both measures have a similar association with

the response, but we present the second measure because it

explains more variance in the response and is not correlated

with other predictors in both projects.

Popularity (nUsr) represents the number of Firefox users

in Mozilla, as described in Section IV-B. We did the

following to approximate the historic numbers of Gnome

users. First we obtained the estimates of the fraction of

linux users14 15. Then, we used surveys of desktop choices

for the period between 2003 and 200816. For the 2009

to 2011 we approximated Gnome users by the fraction of

Ubuntu users15. Eventually we multiplied the market share

of Ubuntu/Gnome by the estimates of Internet users13 to

approximate Gnome user numbers.

We used GotF ix to represent the value contributor pro-

vided to the community. Having at least one of the reports to

be fixed indicates a tangible improvement of product quality.

Barrier to entry BtE depends on the project. We used

FNotRep (the first participation is not an issue report)

for Mozilla and withBB (the first participation is using

Bug-Buddy) for Gnome, because withBB explains more

deviance than FNotRep in Gnome. Since Mozilla did not

have an equivalent tool that required minimal effort to report

an issue we used FNotRep as a proxy for high willingness

to contribute.

We used LckAttn to represent an extreme situation of a

too rapid response (within one hour).

Predictor prj is a sub-project indicator (not shown in

the table) of the ecosystem the participant starts with, e.g.,

Evolution of Gnome, Firefox of Mozilla. It explains 1− 2%
of the deviance and was added to account for the variation

among sub-project environments.

isLTC ∼ nUsr +RS +GotF ix+BtE

+nCmt+ nPeer + pShared

+LckAttn+ PeerPerf + prj (1)

Tables III and IV contain fitted values for Gnome and

Mozilla. 23% of the deviance is explained in Gnome model

and 19% in Mozilla. The second column has the estimated

coefficients, and the third standard errors. All predictors are

significant (at < 0.01 level), except for RS in Mozilla.

The forth to sixth columns show practical importance of

the predictor in determining the LTC probability through

effect sizes. In logistic regression the effect size is odds ratio

(i.e., the sixth column) for the mean value of the predictor

(i.e., column labeled by x) and for the mean value plus the

standard deviation (i.e., column labeled by xalt). That’s the

case for predictors nUsr, RS, pShared, and PeerPerf .

14http://en.wikipedia.org/wiki/Usage share of operating systems
15http://stats.wikimedia.org/archive/squid reports/
16http://www.desktoplinux.com/news/NS8454912761.html,

http://www.desktoplinux.com/articles/AT2127420238.html

Table II
PREDICTORS FOR PARTICIPANT i

Dimension Predictor Description

Willingness
(and
capacity)

nCmt Logarithm of the number of comments +1

GotFix
At least one of the issues reported by i
was fixed.

withBB First report by i uses a crash reporting tool

FNotRep i starts participation with a comment

Macro-
climate

nUsr Number of product users when i joins
RS Project’s relative sociality

Micro-
climate

nPeer
Logarithm of the size of i’s peers’ groups
ln ‖ ∪p∈Peers(i) Peers(p)‖ + 1 where

Peers(p) is the peer group for p

pShared

Logarithm of the social
clustering of i’s peer group

ln
‖∪p∈Peers(i)Peers(p)‖∑

p∈Peers(i)
‖Peers(j)‖

+ 1

PeerPerf

Logarithm of the minimum
productivity (issues/month) of the
peers lnminp∈Peers(i)nmrp + 1

LckAttn
The longest duration between the i’s ac-
tion until the response is less than 1 hour

Table III
MODEL FOR GNOME (125,665 OBSERVATIONS)

Est Std.Err. x xalt
Odds(xalt)
Odds(x)

(Intcpt) -4.79 0.193
nUsr -1.95 0.0908 0.528 0.87 51/100
RS -0.981 0.0588 -0.794 -0.468 73/100

GotFix 0.829 0.0354 F T 229/100
withBB -1.08 0.0556 T F 295/100
nCmt 0.719 0.0314 ln 2 ln 4 165/100
nPeer -0.0543 0.00673 ln 1779 ln 5405 94/100

pShared 2.00 0.182 ln 1.06 ln 1.17 122/100
LckAttn -0.501 0.0778 F T 61/100
PeerPerf 0.218 0.00496 ln 15 ln 318 195/100

For predictors with low discrete values nPeer and nCmt
we chose to use median and 75th or 90th percentiles to make

the interpretation of the effect size more meaningful. For the

boolean predictors such as GotF ix, withBB, FNotRep,
and LckAttn the effect size is the odds ratio for the most

frequent and the less frequent values. Two hypothetical

Mozilla contributors: Alice with one comment in her first

month and Bob with four comments (90th percentile of

nCmt is ln(4 + 1) or four comments), therefore the odds

of Bob becoming an LTC are 112% higher than odds for

Alice if their remaining predictors have values specified in

the forth column of the table.

In summary, the probability of becoming an LTC is as-

sociated with the contributor’s willingness and environment.

Specifically, starting from comments instead of reports, re-

porting with Bugzilla instead of Bug-Buddy, or reporting any

sensible issue that gets fixed double the odds of becoming

an LTC. Regarding micro-climate, low attention in the form

of too rapid response would reduce the odds by 28% in

Mozilla and by 39% in Gnome. Increase of the productivity

of the slowest peer from 14 to 317 MRs/month in Gnome

and from 14 to 248 MRs/month in Mozilla would increase

523

Table IV
MODEL FOR MOZILLA (130,471 OBSERVATIONS)

Est Std.Err. x xalt
Odds(xalt)
Odds(x)

(Intcpt) -7.49 0.419
nUsr -0.601 0.15 0.308 0.57 85/100
RS 0.701 0.293 0.0738 0.173 107/100

GotFix 0.74 0.0831 F T 210/100
FNotRep 0.507 0.0821 F T 166/100

nCmt 0.819 0.0409 ln 2 ln 5 212/100
nPeer 0.142 0.0205 ln 1650 ln 4266 114/100

pShared 2.35 0.135 ln 1.12 ln 1.32 148/100
LckAttn -0.325 0.124 F T 72/100
PeerPerf 0.0649 0.0131 ln 15 ln 249 120/100

the odds by 95% and 20%. Increasing the social clustering

by 0.11 in Gnome and by 0.2 in Mozilla leads to 22% and

48% increase in the odds. For the macro-climate, product

popularity is associated with lower odds that a contributor

becomes an LTC — increasing the number of users by 34%
in Gnome and by 26% in Mozilla reduces odds by 49%
and by 15% respectively. Project’s RS is associated with

lower odds of becoming an LTC in Gnome (0.326 of RS

increase leads to 27% decrease in the odds) but higher odds

in Mozilla (0.0992 of RS increase leads to 7% increase in

the odds). Also, having the size of the peer group increasing

from the median to third quartile is associated with a small

decrease in the odds (6%) in Gnome and an increase (14%)

in Mozilla. In summary:

Observation 3: The probability of a newcomer becom-

ing an LTC is associated with her willingness and environ-

ment. Her pro-community attitude that determines her choice

to start with a comment instead of a report or to report

with Bugzilla instead of automatic tool, and the amount of

effort she provides to the community, are associated by the

most dramatic increases. On the contrary, her macro-climate

with high project popularity, and her micro-climate with low

attention, reduce her odds. Meanwhile, the attributes of her

peer group, in particular, its social clustering and produc-

tivity significantly influence her opportunity to become an

LTC.

As was shown, contributor’s attitude (e.g., starting from a

comment instead of a report, or getting at least one reported

issue fixed) is much more strongly associated with her

chances of becoming an LTC as compared to other factors.

It’s consistent with opinions of Google and Microsoft em-

ployees we interviewed. According to them, what matters is

attitude, because either environment or ability do not pose

obstacles for individual improvement. However, for Tengxun

employee, what matters the most is experience, because less

motivated people will not stay employed. For a small com-

pany like Kingrein, the most important aspect appears to be

ability, because it is the most obvious differentiator among

the employees there (though the manager also emphasized

that the attitude makes a big difference as well). In other

words, when people are in the same environment, what

matters is person’s capacity and/or willingness. If people are

compared in different environments, the environment might

be the primary determinant: Kingrain manager agreed that if

his employees worked at Google, they might perform better

because they had chance to work with more talented people.

Consequently, we have:

Observation 4: The dominant factor in capacity, will-

ingness and environment that affects the probability of a

newcomer becoming an LTC depends on the project context.

V. LIMITATIONS

The first limitation relates to the consistency and accessi-

bility of the data in the Bugzilla of Gnome and Mozilla.

First, the web crawling appears to miss a substantial

fraction of defects. We, therefore, obtained the entire range

of defects from 1 to 645899 for Mozilla and 639379 for

Gnome. Some defects were either not public or not ob-

tainable: 121578 in Gnome and 25388 in Mozilla. We also

compared different snapshots extracted at different times,

and verified to make sure that the later snapshots include

the issues in the earlier ones. While there were no problems

obtaining Mozilla data, Gnome Bugzilla prevents retrieval

of large numbers of issues with complete email address of

contributors. We, therefore, had to rely on public extracts of

Gnome Bugzilla data to map logins to individuals.

Second, we assume that a login (for Gnome) and an email

(for Mozilla) is a unique representation of a single person.

However, multiple people may share the same login or a full

email, and a single person may use several email addresses.

To deal with this issue, we used two approaches. First,

we identified “generic” logins, e.g., ”mozilla”, ”gnome”,

”bugzilla*”, ”*maint” because we focused on ordinary con-

tributors. Second, we used the full name of the participant

associated with each login/email to identify all logins that

had two or more names associated with them (multi-name

logins). We also identified full names that had more than

one login/email associated with them (multi-login names).

To verify that our conclusions are not affected by this

assumption, we fit our models on three datasets: the original

data, the data without generic logins, and the data without

generic and multi-name logins and with all logins having

multi-login names replaced by the corresponding name.

The results were similar and we reported results using the

original data.

Third, the data itself might not reflect what actually hap-

pened. e.g., Gnome Bug 572011 doesn’t have an information

page or an xml file, but it has an activity history page. Some

MRs have some states missing. For example, for Mozilla

Bug 235354 the resolution type on the information page

was “Status: RESOLVED NOTABUG”, but on the history

activity page the last resolution was INVALID. To address

this limitation we tested how sensitive our analysis results

are to these data consistency issues. 995 MRs in GNOME

524

and 601 MRs in Mozilla had intermediates states missing,

but excluding them didn’t have any noticeable impact on the

results.

The second limitation relates to the measures we con-

struct: do they reflect the intended concepts and can we

measure each concept separately from other concepts? In-

dividuals and their environment are notoriously difficult to

measure because of the variability among individuals and the

ambiguity of concepts such as willingness and opportunity.

The issue tracking systems, however, provide a practical

opportunity to observe the activities individuals engage in

and infer the effort they spend to conduct them. From

these basic measures it is possible to estimate their capacity

and willingness. Second, it is almost impossible to measure

one separate dimension. People’s activities we observe are

always the combined effect of multiple dimensions. For

example, number of issues a participant is involved in

shows not only her experience, but also her willingness

to contribute, and maybe how buggy that product release

is at that time. Fortunately, as Ericsson et al [6] claimed,

ability and practice are not separable, i.e., the talent is not

needed to explain performance if the amount of deliberate

practice is taken into account and the only way to increase

the deliberate practice is through willingness. Therefore we

encompass capacity and willingness into a single dimension

— we refer to it as willingness — after all, willingness

determines how much an individual would get involved in

a volunteer activity.

From the internal validity perspective we checked the

assumptions for the logistic regression and log-transformed

the predictors. While only 19 − 23% of the deviance is

explained, this is, in fact, a very good fit given that only

0.9% − 3.6% of the participants become LTC (in Mozilla-

Gnome). From the prediction perspective, if we randomly

picked 1% of participants and compared with model pre-

dictions, our precision would improve 25-11 times. For

example, in Mozilla, among developers with the top 1%

predicted probability 22.15% are LTCs, while for a random

predictor the precision would be 0.9%.
From the external validity perspective, the way Gnome

and Mozilla are operating is not unusual for open source

projects. The models for both projects are quite similar.

However, both are large projects and both represent user

interface domain. We, therefore, may not generalize to other

domains (e.g., server), and smaller projects.
Its important to stress that our findings show association

between the response and predictors, but that association

may not be causal. In particular, there may be some aspects

of individual character or of the environment that we did not

measure, but that cause both the response and the predictors

to behave in the observed pattern.

VI. CONCLUSIONS

In this study, we have tried to address the following

research question: what impacts the chances that a new

joiner to a software project will become an LTC? Is it

related to differences of persons’ characters, variation in

project climate, or, to the interaction between individuals and

their environments? We measured the behavior of individual

participants in Gnome and Mozilla using issue workflow, and

modeled how the differences in their behavior affected the

probability of the participant becoming a valuable contribu-

tor to the community.

We found that the main differences among participants

were in their capacity, willingness and opportunity to con-

tribute at the time of joining. A participant’s capacity and

willingness is measured through the activities she takes

on, i.e., the number and type of tasks she starts with,

and the effort she puts into her contributions, e.g., the

fraction of reported issues that were ultimately fixed. The

opportunity is measured as environment’s macro-climate that

was shared among all participants and micro-climate that

was unique for a person. In particular, product popularity,

project task density, and project sociality constitute measures

of macro-climate, while the initial size of peer group,

their performance, their social clustering, and their attention

to the new participant constitute micro-climate. We found

that the probability of a newcomer becoming an LTC to

be associated with person’s willingness and environment.

Most importantly, her pro-community attitude represented

by her first contribution being a comment on an existing

issue instead of a bug report or a report through Bugzilla

interface instead of a crash-reporting tool double her odds

of becoming an LTC. Having any of issues reported during

the first month to be fixed has the same effect. Her micro-

climate represented by low attention of too rapid response,

and her macro-climate represented by the increased project

popularity reduce her odds. Project’s relative sociality and

individual’s peer network size had opposite effects in the two

projects. This may reflect some inherent differences between

practices of Gnome and Mozilla that need further study.

These finding may help individual participants to under-

stand what their own roles are and find the best ways to

contribute. It is also likely to help OSS communities to adopt

better strategies to attract and retain newcomers. Specifically,

the probability of staying longer is associated with how

much value a new participant provides to the project by

commenting, putting more effort into issue reports, and by

the amount of attention the project provides to the newcomer.

Ironically, it is during times when projects are popular, thus

overwhelming the mentors, the community needs to put extra

effort to retain newcomers.

ACKNOWLEDGMENT

The work was partially supported by National Basic Re-

search Program of China Grant 2009CB320703, the National

Natural Science Foundation of China Grant 61121063 and

the Nature Science Foundation of China Grant 61073016.

525

REFERENCES

[1] M. Zhou and A. Mockus, “Developer fluency: Achieving true
mastery in software projects,” in ACM SIGSOFT / FSE, Santa
Fe, New Mexico, November 7–11 2010, pp. 137–146.

[2] D. H. Lindsley, D. J. Brass, and J. B. Thomas, “Efficacy-
performance spirals: A multilevel perspective,” Academy of
Management Review, vol. 20, no. 3, pp. 645–678, Jul. 1995.

[3] M. Blumberg and C. D. Pringle, “The missing opportunity
in organizational research: Some implications for a theory of
work performance,” The Academy of Management Review,
vol. 7, no. 4, pp. pp. 560–569, 1982.

[4] M. Zhou and A. Mockus, “Does the initial environment
impact the future of developers?” in ICSE 2011, Honolulu,
Havaii, May 21–28 2011, pp. 271–280.

[5] U. Neisser, G. Boodoo, J. Bouchard, Thomas J., A. W.
Boykin, N. Brody, S. J. Ceci, D. F. Halpern, J. C. Loehlin, and
R. Perloff, “Intelligence: Knowns and unknowns,” American
Psychologist, vol. 51, no. 2, pp. 77–101, Feb. 1996.

[6] K. A. Ericsson, R. T. Krampe, and C. Tesch-Rmer, “The
role of deliberate practice in the acquisition of expert perfor-
mance,” Psychological Review, vol. 100, no. 3, pp. 363–406,
Jul. 1993.

[7] H. M. Parsons, “What happened at hawthorne?” Science,
vol. 8, no. 4, pp. 922–932, 8 March 1974.

[8] B. Curtis, “Fifteen years of psychology in software engineer-
ing: Individual differences & cognitive science,” in ICSE’84,
1984, pp. 97–106.

[9] J. D. Couger and R. A. Zawacki, Motivating and Managing
Computer Personnel. New York, NY, USA: John Wiley &
Sons, Inc., 1980.

[10] A. Mockus, “Organizational volatility and its effects on
software defects,” in ACM SIGSOFT / FSE, Santa Fe, New
Mexico, November 7–11 2010, pp. 117–126.

[11] A. Ko, R. DeLine, and G. Venolia, “Information needs
in collocated software development teams,” in ICSE 2007.
ACM Press, May 20–26 2007, pp. 344–353.

[12] M. Cataldo, P. Wagstrom, J. Herbsleb, and K. Carley, “Iden-
tification of coordination requirements: Implications for the
design of collaboration and awareness tools.” in Conference
on Computer Supported Cooperative Work CSCW’06, Banff,
Alberta, Canada, 2006.

[13] B. Dagenais, H. Ossher, R. K. E. Bellamy, M. P. Robillard,
and J. P. de Vrie, “Moving into a new software project
landscape,” in ICSE 2010, Cape Town, South Africa, May
1-8 2010, pp. 275–284.

[14] A. Mockus, R. T. Fielding, and J. Herbsleb, “Two case
studies of open source software development: Apache and
Mozilla,” ACM Transactions on Software Engineering and
Methodology, vol. 11, no. 3, pp. 1–38, July 2002.

[15] D. M. German, “The gnome project: a case study of open
source, global software development,” Software Process: Im-
provement and Practice, vol. 8, no. 4, pp. 201–215, 2003.

[16] P. A. Wagstrom, “Vertical interaction in open software engi-
neering communities,” Phd thesis, Carnegie Mellon Univer-
sity, vol. CMU-ISR-09-103, March 2009.

[17] P. Robillard, “The role of knowledge in software develop-
ment,” Communications of the ACM, vol. 42, no. 1, pp. 87–
92, 1999.

[18] J. Lerner and J. Tirole, “Some simple economics of open
source,” The Journal of Industrial Economics, vol. 50, no. 2,
pp. 197–234, 2002.

[19] L. L. Cummings and D. P. Schwab, “Performance in organi-
zations: Determinants and appraisal.” Administrative Science
Quarterly, vol. 18, no. 3, pp. pp. 412–414, 1973.

[20] R. C. Mayer, J. H. Davis, and F. D. Schoorman, “An
integrative model of organizational trust,” The Academy of
Management Review, vol. 20, no. 3, pp. pp. 709–734, 1995.

[21] A. Mockus, “Succession: Measuring transfer of code and
developer productivity,” in 2009 International Conference on
Software Engineering. Vancouver, CA: ACM Press, May
12–22 2009.

526

