UsingVersian Contrd Datato Evaluatethelmpad of Software Tods:
A CaseStudyof theVersionEditor *

David L. Atkins,* ThomasBall,* ToddL. Graves™ andAudris Mockus’

* University of Oregon

X Microsoft Research

* Los AlamosNationalLaboratory ° AvayalabsResearch

October9, 2001

ABSTRACT

Softwaretools canimprove the qudity and maintainabity
of software,but areexpensve to acquire deplay andmain-
tain, especiallyin large organizatiors. We explore how to
quarify the effectsof a softwaretool onceit hasbeende-
ployedin adevdlopmentervironmen. We presehaneffort-
analysismethal thatderives tool usagestatisticsanddevel-
operactionsfrom a projects changehistory (versioncontol
systemyandusesanove effort estimatioralgoithm to quan
tify the effort savingsattributabie to tool usage.

We apgy this methodto assesshe impactof a software
tool calledVE, a versim-sensitve editorusedin Bell Labs.
VE aidssoftwaredevelopersin copingwith therammantuse
of certainprepocessodirectives (similar to #if/#endifin C
sourcefiles). Our analysisfound that develgperswere ap-
proximately40%moreproductive whenusingVE thanwhen
usingstandad text editors.

Keywords

softwaretools, versian contiol systemgeffort analysis

1 Introduction

While softwaretoolshave the poteriial to improve thequal-
ity andmaintanability of software,acquirirg, deploying and
maintainirg a tool in a large organizationcanbe an expen
sive proposition. We explore how to quantify the effects of
a softwaretool in an ongang large-scalesoftware prgect.
We describea casestudyof theimpactof aversionsensitve
text editor calledVE. We assesshe impactusinga methal
that relatestool usagestatisticswith effort estimatedased
on analysisof the chang history of a softwareproject. The
valuein perfaming suchanimpactanalysisis to createdata

*This work was done while all four authors were membersof the
Software Produdion Reseach Deparmentin Lucent Technobgies’ Bell
Laborabries.

from which subsequendecisionsabou the tool usecanbe
mademore effectively (e.g, to keepatool, to deploy it more
widely, to rewardits use,to pulish resultsthatwould influ-
enceotherpotentialadgters,etc.)

Our work is basedon two obserations. The first obser
vationis thata majoreffect of a softwaretool, beit adocu
mentationtool, sourcecodeeditor, codebrowser, slicer, de-
bugger, or memay-leak detecto, is to help a developer de-
terminehow to modfy asoftwareentity or directlyto aidthe
developerin makingmodifications. Thesecondbseration
is thatthe charge history of a softwareentity (i.e., the ver
sioncontiol dataaboutthemodificationsto theentity) canbe
usedto estimatethe amoun of effort a developer experded
on a particularmodfication or setof modfications,aswell
asmeasurs of the overall time (intenal) taken to develop
a softwarefeatue. To obtainaccuate estimatef tool ef-
fectsit is oftenimportantto have effort estimatesat a fine
grainal chang level, however, it is unreasonabléo expect
that developers could always accuratelyand efficiently re-
port effort for individual changsthey comnit to a versian
contrd system.

Theseobsevationsleadto a simpleprocessfor assessing
theimpactof asoftwaretool:

1. Recordthetoolsadeveloperusesin the courseof soft-
ware developmentand the software entitiesto which
they wereapgied.

2. Relatethemonitaing informationrecoradin steplto
the modficationsto software entitiesthat arerecaded
by theversioncontrd system.

3. Using the datafrom the previous two stepsand the
chang effort estimationalgoiithm describedin Sec-
tion 4, analye“similar” developersandmodfications?

LIn Sectbn 4 we introduceanalgorithm thatestimaeseffort for individ-
ual changs from information available in a versioncontrol system.

2Sectin 5 qualfies and quantfies the notions of “similar” developers
andmodifications.

DRAFT to appea in IEEE Transactionon Softwae Engneering 2

to estimatenow the use/norndseof thetool affectedde-
veloper effort andoverall interval.

We appliedtheseideasto a real-world exanple from Lu-
centTechndogies. We presenta casestudy of a software
tool thatprovidesan elegant solutionto the problemof ram-
pantuseof certainkinds of prepocessodirectives(suchas
#i f/ #endi f in C sourcefiles). Thesedirectivestypically
areusedto createmary different variants,or versions,from
a singlesourcefile. A develgper editing suchfiles mustbe
carefu to malke chamgesto theappopriateversion soasnot
to interfere with otherversiors [31]. The solutionto this
prodemis aversian-sensitve editor (VE) thathidesthe pre-
processingdirectivesfrom a developer. VE allows a devel-
operto edita particula versionof thesourcefile (i.e.,aview
of the underlying ASCII file in which certainpregocessing
directiveshavebeer‘compiled” away). As theusereditsthis
view of the sourcecode,VE translateditingopeationson
theview backinto theunderlying sourcefile.

Our primary hypothesisis that the VE tool reducs the
effort neededto make changs involving pregocessordi-
rectives. Our secondar hypothesisis that the usageof VE
would leadto shorterdevelgpmentintenals. We testthese
hypothesewia aquantitate analysisof develgpereffort and
devdlopmert interval basedon the charge history of a very
large software product in which both VE andothertext ed-
itors wereused. For eachchangemadeto the software,we
wereableto determire whetheror not VE wasusedto make
the charge. By combiring this informationwith the deve-
opereffort analysiswe found thatdeveloperswho usedVE
wereon average40%moreproductive thanwhenusingstan-
dardtext editois (whenchangng files containirg pregoces-
sor directives). We alsofound a correspondig decrasein
thedevelgpmentintenal of new softwarefeatues.

Through our casestudy we illustrate a nunber of prob
lemsthat mustbe solvedto arrive at an accurateestimateof
how softwaretoolsimpactdevelopereffort. Primarily, these
areproddemsof how to controlfor key source of variatin
suchas:

o Developer work-styleandexperience
¢ Sizeof chargesto softwae;

e Type of charges (new feature, bug fix, coce cleanup
codeinspectim).

Our work is complenentaryto the analysisof tools in
contrdled settings[17, 16, 23] and software tool assess-
ment[25, 22, 7]. Contrdled experimentson tool usecan
yield valuable insightsabou the utility of a tool on small
scaleexamges; our work seeksto addressthe ongoing im-
pact of a tool in an industrial developmert ervironmert.
Softwaretool assessmermompresvarioustoolsto onean-
otherandattemptdo predicttheimpactof atool onaproject
before deployment. Our work complenents such assess-
mentsby providing information on tool impactduring de-
ployment.

The paperis organizedas follows. Section2 provides
backgourd on versioncontol systemsandthe prodem of
prepocessodirectivesin the particularprojed unde study
Section3 describs the versioneditor (VE) tool andhow it
addressesthe prodem of pregocessodirectives. Section4
summaizes our methaology and algorithm for analyzirg
versioncontiol datain orderto estimatethe effort experded
by developersto make chamges. Section5 presentshe re-
sults of applying this algorithm to the versian contrd data
from alarge softwaresystemin which VE andothertext ed-
itorswereused.Section6 describesanalyse®f VE's effects
onintenal andquality. Section7 considerpossiblewaysto
genealizethemethal. Section8 discusseselatedwork and
Section9 concludesthe paper

2 Background

The casestudy hererevolves arourd a comnercially suc-
cessfumulti-million line softwareprodict (alargetelephor
switchingsystem)evelopedover two decade by morethan
5,00 developers. We first presentbaclgrourd materialon
the versioncortrol systemusedby the projectandthende-
scribetheproject-sgcific versioningproblens thatled to the
creationof the VE tool.

2.1 Version Control System and Data

Theextendedchang managmentsystem(ECMS)[19], lay-
eredon top of the sourcecodecontrd system(SCCS)[26],
wasusedto managehe sourcecodeof the product.

We presenta simplified descriptio of the datacollected
by SCCSandECMS thatarerelevantto our study ECMS,
like mostversioncontrd systemspperaesover asetof files
containng thetext lines of sourcecode. An atomicchang,
or delta to the proglam text consistsof the lines that were
deletedandthosethatwereaddedn orderto make achang.
Deltasareusuallycompuedby afile differencingalgorithm
(suchasUnix diff), invoked by SCCS,which comparesan
olderversionof afile with thecurren version

ECMS record the following attributesfor eachchang:
the file with which it is associatedthe date andtime the
chang was “checled in”; andthe nameandlogin of the
developer who madeit. Additionally, the SCCSdatabase
record eachdeltaasatupleincludingtheactualsourcecode
thatwaschangd(linesdeletedandlinesadded, login of the
developer, MR numter (seebelow), andthe dateandtime of
chang.

In orderto make a chang@ to a softwaresystem,a deve-
opermayhave to modify mary files. ECMSgroupsdeltasto
the sourcecoderecorad by SCCS(over potertially mary
files) into logical changegeferral to as Maintenace Re-
questyMRs). Ther is onedeveloperperMR. An MR may
have anEnglishabstractssociateavith it thatthe developer
provides, describimg the purpose of the chang. The open
time of the MR is recorced in ECMS. We usethe time of

DRAFT to appea in IEEE Transactionon Softwae Engneering 3

thelastdeltaof anMR asthe MR closetime. We perfamed
textual analysisof the MR abstractgo infer the purposeof
achang [20]. Upontakingoutan MR, developerswrite a
shortdescriptim of the purposefor the chang in Endish.
The termsusedin suchabstractsare classifiedas pertain
ing to new featue development(NEW), correctize activity
(BUG), restruturing/cleamp (CLEANUP), or codeinspec-
tion (INSPECT).For example,an MR whoseabstractcon-
tainsthe term “uninitialized variable”is classifiedasBUG,
whereasan abstractcontainirg the term “new featue” is
classifiedas NEW, and an abstractcontairing “remove old
code” is classifiedas CLEANUP. We classifiedeachMR
depewding on which termsappeaiin their abstractsperthe
methodlogy in [20]. In the project,5% of MRs weredore
to implemen recomnendatios of codeinspectiormeetings
(INSPECT)(cortaining“codeinspectim” in their abstract.)
The classificationwasvalidatedin follow-up developer sur
Veys.

The INSPECTMRs were separatedrom the otherthree
types becase they differed substantiallyfrom other MRs
donein this project. First, they weredore accordimgy to de-
tailed prescriptims from codeinspectionmeetingsandin-
volvedlittle creatvity onthe partof the developer (codein-
spectiondMRs are“busywork”, in the words of onedevd-
oper) Secondthey hadalargenumbe of deltas(we usethis
paraneterto modeltheeffort in Sectionb), but they werenot
difficult to implement, sincethe chargeswereprescriled by
a teamof developerspremaring for and participatirg in the
codeinspectiormeeting.Third, inspectiorMRs includedall
recommendatios of the codereview meetingrangingfrom
bug fixesto improving commentsandvariablenamesThus,
INSPECTMRSs area mixture of bug fixing andcleanupac-
tivity. Conseqantly, it wasessentiato separatdNSPECT
MRsinto adistinctclassto improve the effort mocel for this
product. Otherprodicts might containfew or no INSPECT
MRs, therely simplifying the classification.

Theway develgperswork on MRs mightvaryacrossorga-
nizatiors. We illustratethe work patternsn the considerd
organization Figurel shavs MR intervas for two repie-
sentatve developers. Eachhorizantal dashrepresentone
MR. The startingandendirg positionsof thedashrepresent
the openandclosetime for the MR. The vertical axis rep-
resentscumulatize countsof MRs for eachdeveloper. Fig-
ure 1 shaws two distinct stylesof work. One developer al-
ways closesMRs quickly (curve to the bottomright). The
otherdeveloperoccasioally leavesMRs openup to several
montts. Most MRs are completel within a week for both
developers,whichmeanghatthe morthly time sheeteports
of developersare of an appopriategrarularity to track the
amount of time developersspendon MRs.

2.2 The#version Problem

The softwareproductin our casestudyrequresthe concu-
rentdevedlopmen andmaintermnceof mary sequetial ver-
sionsaswell astwo mainvariarts for domesticandinterra-

MR number
300 400 500
| | |
[

200
\
L

100
\

20 40 60 80 100
Months

Figurel: MR intenvalsfor two developers.

tional configuationsof theproduct. Fromaversionmana@-
mentpoirt of view, sourcecode maybecomman to asmary
astwo dozendistinctrelease®f the code.Someof thesere-
leasesorrespondo deplo/edproductsfor which only main-
tenancechamgesare made while othes correspondto ver-
sionsunderactive devdlopmen.

The softwarereleasegorm a version hierachy with two
main variantsand chranologicd releasesequenes within
eachof these. Several constraims on the prgect manag-
mentare reflectedin the way sourcechargesare madeto
presere this hierachy. First, it is imperatve thatthe new
developmert or maintenacechange madefor onesoftware
releasenot impad the previous releasein the sequencer
ary releasen the othermainvariart. Secondit is impoitant
thatasmuchcommaality of coce be preseredaspossible:
changsmadein anearlierreleaseshouldautomaticallyap-
pearin the later releasesn that sequene. In the exanples
thatfollow, the two mainvariart lines aredesigratedas ‘A’
and'B’, andthesequetial releasesvithin eachmainline are
designatedby ascendig numbes, e.g, 1A, 2A, 1B, 2B, and
soon. To achieve the secondobjective, mostof the source
files aresharecamongthereleasesyith releasespecificdif-
ferenesdelineatedsdescribedn thefollowing paragaphs.

Theindustrial sourcecode managmentiechnaogy of the
early1980s did not have goad suppot for brarching. That
is, therewerenotoolsfor maintaning sourcahatwasmostly
comma to mary releasesut containedsomereleasespe-
cific charges,andno tools for automaticallymerging sepa-
ratechargesto acomman codebase.To addresshemultiple
releaseequrementsof the projectuncer study aspecialized
directive#versionwasusedto allow for releasespecificvari-
ationsin the code,asshown in Figure2. The#versian con-
structpernits a singlesourcefile to be extractedto produce
a differentversionfor eachsoftwarerelease.We canthink
of this corstructasa C prepiocessotif directive whereonly

DRAFT to appea in IEEE Transactionon Softwae Engneering 4

one Booleanvarialde is usedfor contrd, the variale may
be nggated,andthevariablecomesfrom arestrictedsetthat
contairs onevariablefor eachsoftwarereleaseVarioustools
areusedto verify the corsistentuseof thesecorstructsac-
cordirg to areleasehierachy maintainedy the system.For

exampe, thetoolsguarateethata changechecledin for 5A

will not affect the sourceextraction for 4A or earlieror ary

of the ‘B’ releases.Tools arealso provided to perform the

extraction of the sourcecodefor building eachsoftwarere-

leaseagan accodingto theversionhierarcly. For exampe,

extraction for release4A implies that the versionvariables
4A, 3A, 2A, and1A aretrue andall otherversia variables
arefalse.

Whena developerintroducesnew codefor areleasethe
new codemustbe bracletedby a #version corstructfor the
specificreleasdor whichthechang is tamgeted.Whena de-
veloper chargesexisting codefor areleasetheexistingcode
mustbelogically remoredwith a#versionusingthenegation
of thetagetreleaseandthe chang introducedwith a#ver-
sionfor thetargetreleaseFigure2 shovshow #versia lines
areusedto chan@ theexpressionin anif-then statementor
Releas®A. Theoriginalif-then statemenivascodeinserted
for ReleaselA.

As theexanple shavs, evena oneline chargeto thecode
requiresthe developerto addfive linesto thefile (four con-
trol linesandthechangdcodeline). Thedeveloperbraclets
the original line with the negated #version(I15A) contrd to
omit it for releasebA. Thenthe developermakesa copy of
the line andbracletsit within #version cortrols for release
5A. Finally, thechargeis madeto thecopiedline. The#ver-
sionlinesalsomake thesourcefile moredifficult to readand
undestand. Figure 3 illustratesthe frequenciesof file sizes
andthefrequenciesof the pragportionof #versionlinesto to-
tal linesin afile. Datafrom onesubsystenareshavn. The
average propation of #versionlinesto all linesis 14%and
thelargestpraportionis 67%.

3 VE: A Version-sensitive Editor

To maleit easierfor developersto copewith #versiondirec-
tives,a versionsensitve editor (VE) was madeavailablein
theprojectuncder considertion [9, 24, 4].

3.1 TheVE tool

VE allowsthedeveloperto editin aview thatshavs only the
codethatwill beextractedfor thereleaséoeingchanged. The
tool alsoperfams the automaticinsertionof ary necessary
#versionlines. For exampe, the insertionof a new line for
releasebA in anareathatdoes not have ary releaseA code
will autonatically producetherequiled#versian aroundthe
line. Likewise,achangdo aline will automaticallyproduce
the #version for the negaion of 5A which will excludethe
existing line for 5A, andinsertthe change line with #ver-
sionto includethechang for 5A (asin Figure2).

if (!PreCheckRoute(route))
return FAIL;
#version (4A)
dest = GetDest(route);
if (dest.port == 0) {
return(RouteLocal(route));
}
#endversion (4A)
DoRoute(route);

if (!PreCheckRoute(route))
return FAIL;
#version (4A)
dest = GetDest(route);
#version (15A)
if (dest.port == 0) {
#endversion (15A)
#version (5A)
if (dest.port == 0 || dest.module == 0) {
#endversion (5A)
return(RouteLocal(route));
}
#endversion (4A)
DoRoute(route);

Figure2: Beforeandaftera ReleasesA change Embold
enediinesarethe codeaddedby the progammer

Thedeveloper's view is of normd editingin the extracted
code;VE managsthechangsto the#versionlinesaccord
ing to the constraits describedin Section2.2 Figure 4
shaws the view presentedy VE for thefile from Figure2.
In VE, the devdloper only hasto usestandad editing com-
mands to effect the chargeto theif-then statementandVE
insertsthe required #version directives (behind the scenes).
VE belaveslike eithervi or emacs, thetwo standardeditors
usedby mostof the developersin the project. In fact, the
appeaanceto thedeveloperis thatof usingthe standardedi-
tor with theexterdedbehaior of dealingwith #versionlines
automdically.

For this study a notevorthy aspecbf VE is thatit leavesa
signatue onall of the#versioncontiol linesthatit geneates.
This signaturecorsists of trailing white space(a combira-
tion of spaceandtab charactes) thatuniquely distinguishes
thecortrol line from ary contwol line geneatedfor ary other
chang? This was dore to avoid unwanteddepemlencies

3In fad, the trailing space andtabsenadethe current deltanumberin
theunderlying SCCSfile. Asaresult evenif developerscopy VE-genered
#versim linesusingan ordinary text editor, we candeterminethatthis was
ahandchange with high probablity (becawsethedelta numberof thesigna-

DRAFT to appea in IEEE Transactionon Softwae Engneering 5

Counts
0 200 400 600

|
0 1

Il-
2 3

log10(LOC)

0.0 0.2 0.4 0.6

#version lines/total number of lines

Counts
0 100 200 300

Figure3: Sizeof files andfraction of #versionlinesin one
subsystem.

if (!PreCheckRoute(route))
return FAIL;
dest = GetDest(route);
0 if (dest.port == 0 || dest.module == 0) {
return(RouteLocal(route));

}

DoRoute(route);

MR 12467 by dla,97/9/21,assigned [Local routing]
Versioning: 5A inside 4A
"route.c” [modified] line 67 of 241

Figure4: Releas&A view in VE with chang in bold

causecdby SCCSs useof the Unix diff utility. Sourcefiles
cancontainmary identical#versionlines,andthis similarity
canin somecasescauseSCCSto storea chang asif it af-
fected#versia linesthatthedeveloperdid nottouch.VE es-
sentiallymimics an obsered manwal practicedore to avoid
this type of depenleng. However, VE producesthetrailing
white spaceon every#versionline it generatesvith analgo-
rithm that uniquely identifiesthe lines as producedby VE.
Sincetheuseof VE is optioral in the prgect, this “feature”
of VE allows usto distinguishwhenVE wasusedto make a
chang involving #versionlines from whenthe chang was
madeusinganordinay editor.

Figure5 shavs the history of VE usagen the considerd
projed, which corsistsof appraimately 600000MRs. The
threelinesshaw the perceageof MRs thatweredonewith

turewill mostlikely disageewith the currert deltanumberof the underly-

ing SCCsfile).

0.8

0.6

0.4

Fraction of Changes

0.2
\
¥
\
+
)
<
\
\

- H HAND

e N NONE
- V VE

1984 1986 1988 1990 1992 1994 1996 1998

0.0
<
1
1
i
¥
1
<

Years

Figure5: VE usageover time.

VE (V: MRs suchthatall deltasof the MR contaired #ver-
sionlineswith the VE signature)without VE (H: MRs such
thatsomedeltaof the MR containeda #versionline without
the VE signatue), andwithout #versionlines (N: MRs such
thatno deltain the MR containeda #versionline). The us-
ageof VE increasediramaticallyover time. Approximately
55% of changsinvolving #versionlinesaredore usingVE.
Around 45% of the chargesdonein 1998 do not involve
#version lines and, consegently, we do not know for cer
tain whetheror not the VE tool wasused.Accordng to our
hypothesistheuseof VE shouldnotaffed the effort it takes
to compete suchchangesandthis hypothesiswvastested(as
describedelow).

Figure6 shavs how developersusedVE overtime. The
curves shav for every yearthe fraction of develgperswho
comgeted:

¢ moreMRs entirelywith VE thanentirely by handthat
year(VE > H);

¢ atleastoneMR entirelywith VE thatyear(VE > 0);
¢ atleastoneMR entirelyby handthatyear(H > 0);

e complded at leastone MR entirely with VE at some
pointin the past(“tried VE”).

Figure6 shavs thatwhile 89%all of the developershave
tried VE at somepointin the pastby the endof year1999
only 84% of them (74% of the total) have usedVE during
1999 63% of developerscontirue perfaming at leastsome
changsinvolving #versionlinesby handandabait 55%use
VE more frequently on suchchangeshan doing them by
hand Thefigureanswerdasictool deploymentquestions:

e How mary developerstried the VE tool?

¢ OftheoneghatuseVE dothey useVE morefrequently
thanchang codeby hand®

DRAFT to appea in IEEE Transactionon Softwae Engneering 6

1.0

T emmm——— H>0
-
\\\ Tried VE

0.6 0.8
I

Fraction

0.4

0.2

T T T T T T T
1986 1988 1990 1992 1994 1996 1998

Years

Figure6: Fractionof developersusingVE overtime.

e How mary neverchang #versionlinesby hard?

The popuation that hasnot tried the tool (20%) needsto

know abou tool's existene andmayrequiretraining. People
who havetriedit but dort useit any more(10%)andpeope

who make changs by handmorefrequently thanusingVE

(20%) shouldbe suneyedto find if thereareproblemswith

VE or if new featueshave to beadded.

3.2 Anecdotal Evidence of the Effectiveness of
VE

The statisticalstudyin the next sectionshavs an increase
in productivity of developers when VE is usedto make
changs, but canrot point to what aspectof the tool is re-
sponsiblefor this improvemen. However, commers from
usersof the tool suggesthatthe prodictivity improvement
is dueto therediction of effort thatis requred whenmanu
ally coding#versionlinesto make changs.

One developer repated having to malke a concetually
simple chang that was nearlyimpossibleto malke without
VE. The chang requied the renaning of a symbad in a
sourcefile. Sincethe file had mary #version lines andthe
chan@ hadto be madefor oneversionwithoutaffecing ary
of the others, makirg the charge meantmanually determin
ing eachoccurenceof the symbad thatextradedfor thetar
getversio. If theline wasalreadywithin the desired#ver-
sioncorstruct,thenthe symbd couldsimply be chamged. If
not, thenthe existing line would have to be “versionedout”
for thetamget version,anda copy of theline with the chang
“versioredin” (akinto the chang madein Figure?2). Since
therewerenearlya hunded occurencesof the symbd, ex-
aminingeachoneto determinef it nee@dto bechange and
thendeternining how it shouldbe change would not only
be extremely time consunng, but also error prone. With
VE, thedevelopercouldsettheview to the extractedversim

and simply give one global substitutecommaurl to chang
all the occurencesof the symbd. VE guamnteedthat the
proper #version directives wereinsertedautomatically thus
redudng thetaskto a matterof minutes.

Otherdevelopersrepated that the autormatic handlirg of
#versionconstrietsprevertedthemfrom producingincorrect
or corrypted#version constructsyhich oftenoccuredwith
manual editing andrequred significanttime to track down
andfix.

Usersalsorepoted that asidefrom the automaticinser
tion of #versia constrwts, the ability of VE to displaythe
extractedview in the editor madeit mucheasierto unde-
standthe codein afile with comgex #versiaing andlocate
the linesthat neededo be changed ECMS providescom-
mand for perfaming extractian to be ableto seethe code
asthe conpiler seesit. However, in a heaily #versioned
file, theremaybemary similar or identicallinesthataretar-
getedfor separateversions,andlocatingwhich of the lines
arerelevant to theversionneediry to bechangdcanrequire
significanteffort.

Someexpeienceddeveopersrepated that having a tool
perfam the #version work autonatically resultedin far
fewer questioms from lessexperierceddevelopersabou howv
to code#version lines correctly This suggestshatthe less
expelienceddevelopersareableto bemuchmoreprodictive
with VE. In addition,the corsultingwork loadontheexpei-
enceddevelopersis rediced,althoudh that effed is difficult
to measuralirectly.

4 Developer Effort Estimation

SinceVE leavesavisible signaturen theversionhistory all
the necessarylataare in placefor measurig how helpful
VE canbeto developers.We hypothesizeahatwhenmakirg
changsinvolving #versionlines,developersaremoreeffec-
tivewhenusingVE thanwhenusingstandardext editors.In
this sectionwe descrile a geneal methoalogy, introduced
in [13], for measurig theinfluerce of variousfactorsonthe
effort requred to make a chang, usingthe charge history
of aversioncontrd systemandperiodc time sheetdata. In
Sections, we applythismethoalogyto theprodem of mea-
suringthe effect of the VE tool.

In principle, if measuementsof effort for eachchang
competed by developerswere available, we could fit a re-
gressiommodelsuchas

E(effort) = apgy % BTypE X Siz€' x oo

in order to obtain estimatesof the effects on effort of the
following varables:

e DEV: developeridentity;

e TYPE: type of change which rangesover the values
NEW, BUG, CLEANUP, INSPECT(seeSection2.1);

DRAFT to appea in IEEE Transactionon Softwae Engneering

Jan Feb Mar Apr | Total
EffortforMRA | 1.0 05 05 05| 25
EffotforMRB | 0 05 05 0 1.0

Jan Feb Mar Apr | Total
Effort for MRA | ? ? ? ? ?7?
EffortforMRB | O ? ? 0 ?7?
EffortforMRC | O 0 ? ? ?7?
repotedeffort | 1.0 1.0 15 1.0

Table1: Dataavailablein effort estimationproblem, for a
singledevelaoper

e Size: sizeof changewhich is the numker of deltasin
anMR;

e TOOL: useor nonuseof VE, which range over the
valuesVE, HAND, NONE (NONE meansthe chang
did not containary #versia lines).

Previouswork [13, 14, 29] discussesvhichvariadesareim-
portart to include in the model. Thesizeof anMR canbe
measuredy the nunmber of lines added,or by the numkber
of deltas. The number of deltasis usually a betterpredc-
tor becaseit is lesslikely to containoutliers, assomeMRs
changd or introducedabnomally large numters of lines.
Although thereare several typesof changeqTYPE), typ-
ically only the repairactiity (BUG) exhibits significantly
different propertiesbecauseepairsmay requre a lot of ef-
fort but, in theend,mayaffectonly oneline in onefile. Tool
usagg(TOOL) hasthreepossiblevalues,aswe wantto con-
trastchangs doneexclusively usingthetool (VE) to charges
doneby hand (HAND) andto the contrd setof charges
whereno#versionlineswerepresen{NONE).

Unfortunately versioncontrd systemslonotrecod mea-
suremets of developereffort, soouralgoiithm makesuseof
montHy time sheetdatainstead. This algotithm, asshavn
in [14], is an exanple of the Expedation-Maxmization
(EM) algorithm [11]. The EM algorithmis widely usedin
statisticsfor the purpe of maximum likelihoodestimation
in the presenceof missingdata. Table 1 illustrates,for a
singledeveloper, theavailabledata.Rows in thetablecorre-
spondto changscomplded by the develgper, andcolumms
to montts, sothateachcell in thetableis the amouwnt of ef-
fort the developer devotedto a particularcharge in a given
month Monthly time sheetdatarecod the sumsof theen-
triesin eachcolunm: how muchtotal effort a develgper ex-
penckdin amonth We alsoknow whichchangsadeveloper
workedon duringeachmonth anda developer’s total effort
needgo bedividedacrosghesecharges.

The row sums,if we knew them, would be effort mea-
suremets for eachchang, andwe could useregressionto
relatethesemeasuremas to quantitiessuchasthe size of
the charge or whetter the tool wasused. The ideabehird
the algorithm is to begin with a guessat the charge efforts
andalternatelyuseregressionmodelsandthetime sheetdata
to refineour initial guess.In the processwve will refineour
undestandingof thefactorsthataffectchangesffort through

EffortforMRC | 0 0 05 05| 1.0
repotedeffort | 1.0 1.0 15 1.0

Table 2: Initialization of effort modelirg algorittm: divide
developers’knovn montHy effort valueseverly acrosaViRs
openin thosemontrs. At this point the algoithm fits a re-
gressionmocel for MR effort, using (2.5, 1.0, 1.0) asthe
depenlentvariadle measurerantsfor this developer.

Fitted
Jan Feb Mar Apr | Total
EffotforMRA | 0.8 04 04 04| 20
EffotforMRB | 0 04 04 O 0.8
EffortforMRC | O 0O 08 08| 16
reporteceffort | 1.0 1.0 15 1.0

Table 3: Rescalingdevelopers’ morthly MR efforts so that
the total efforts for eachMR equalthe predction from the
fitted mockl, which herepredcted 2.0,0.8 and1.6 morths
of effort for thethreeMRs.

thechangng coeficientsin theregressiormodés. Define
{Yija:1<i<M,1<j<N,1<d< D}

whereY;;q is theamoun of effort spenbntheMR ¢ in morth
j by thedeveloperd. M, N, andD arethetotal nunbersof
MRs, morths, and developersrespectidy. Furthe define
Y;;a(t) to bethe estimateof theunoksenableY;;, atthett?
iterationof thealgoiithm. It will becorvenientto allow ¢ to
take half-integral valuesto indicae estimatesitintermedate
pointsin aniterationof thealgoithm. We will alsouse“dot”
notationwith theY;;4's andY;;4(t)’s to indicatesummirg
over anindex, e.qg.

M
Ya= Z Yija
=1

aretheknowvn amounts of effort experdedby developerd in
monthj.

To constructan initial guess,we divide up eachknown
montHy effort equallyacrossall change openin thatmorth
(seeTable?2):

if Yija > 0, Yija(0) = [{i' : Yirja > 0} 'Yja

Thenrepeatthe following four stepsfor eachiterationt =
0,1,2,... until corvergence:

1. Computerow sumsto obtainestimatesf total MR ef-

DRAFT to appea in IEEE Transactionon Softwae Engneering 8

Jan Feb Mar Apr | Total
EffortforMRA | 1.0 05 0.3% 0.333|2.2(8
EffortforMRB | 0 0.5 0.3% 0 0.8%5
EffortforMRC | 0 0 075 0.667|1.417
repatedeffort | 1.0 1.0 15 1.0

Table4: Rescalinglevelopers’'montiy MR efforts sothatin
eachmorth the developer spentthe correctamoun of total
effort. The next regressionmocel will use(2.2@, 0.875
1.417) asthedepenéntvariablefor this developer

forts, for eachdeveloper(seeTable?2):

2. Fit aregressiormodelof imputedMR effort onthefac-
torsthatpredct MR effort. We preferto usegeneralize
linearmodelg[18] of theform of Equdion (1), givenin
Sectiond. Denotetheresultingfitted valuesY;., (t).

3. For eachdeveloperd, rescalethe rows in theimputel
montHy MR effort table so thatthe new row sumsare
equalto theregressions fitted values (seeTable3):

N
Yija(t +1/2) = Yija®){D_ Yiea(t)} " Yia(?)-
=1

4. Foreachdeveloperd, rescalghecolumnsof thetableso
thatthecolumnsumsareequalto theobsened montHy

efforts (seeTable4):
M

Yija(t+1) = Yija(t+1/2){>_ Yija(t+1/2)}'Vja.
k=1

Corvergerce of this algotithm meanghat the improvement
in the error measue in the mocel fitting stepis negligible.
Thealgorithm is anEM algoilithm [14] andis therebreguar
anteedo corverge (unde unrestrictedcondtions). Its con-
vergencefurther meansthat the improvemen in the errar
measuran the modelfitting stepis negligible after ten it-
erations After corvergence we repot the coeficientsin the
final regressiommodel.

Since the regressionmodel is necessanfor improving
our estimatef charge effort, it is necessaryo make sure
that the modé includesquantitieswhich are known to be
closely relatedto changeeffort. We have found that the
modds shoud include coeficients which deped on the de-
veloper, sincevariatimsin developer prodictivity areoften
quitelarge[5, 10]. Themodkl shoud alsoincludeameasure
of thesizeof achang, suchasthenunberof lineschange
or thenumler of deltasmakingup the chang. Whetherthe

changis abugfix, new featue development, cleanupeffort,
or inspectiorrework, is alsoimportarn.

We have foundthatbecagedevelopersalmostalwaysre-
port very nealy one unit of effort per month, one canre-
placetheserepated montHy effort datausingthe assump-
tion that eachdevelopercortributesone unit of effort each
month without chandng theresultssubstantially

An importantcompnentof theinfererce methalology is
assessinfpow certainonecanbe abou the valuesestimated
for the coeficients in the final regressionmodel. As dis-
cussedn [13], we usethe “jackknife” methal, which con-
sistsof remaving onedeveloperfrom the list we used,run-
ning thealgorithmagain repeging oncefor eachdeveloper
andobservig how muchthe coeficients changedeperling
on which developeris omitted The jackkrife produceses-
timatesof the standarcerror of eachof the regressioncoef-
ficients. This standarderra canthenbe usedto constriuct
confidenceintervals for regressioncoeficients and, in par
ticular, to testhypothesesuchas*“the tool hasno effed on
chang effort” andto attachmeasure®f statisticalsignifi-
canceo thesehypothesesWhile statementaboutstatistical
significancederived from obsenrationaldatashouldbeinter
pretedwith somecare,we believe thatin this studywe have
contrdled for potentialsourcesof confoundng suficiently
well thatcalculatedr-valuesareusefulmeasuresf varialle
importance.

5 Effectiveness of the Version-Editor
Tool

This sectioninvestigatesvhetheror notthe VE tool reduce
the effort neeedto malke chargesinvolving #versim lines.
Ouranalysisproceedsin threesteps:

1. TageachdeltaandMR with VE signatue information;
2. Selectabalancedsetof developers;

3. Estimatethe effect of the VE tool usingthe effort esti-
mationalgorithmof the previoussection.

At the endof the sectionwe summarie measuresaken to
ensurghevalidity of theresults.
5.1 Extraction of VE signature for each delta

As describedn Section3, VE leavesa signaturein SCCS
files becawse of the trailing white spaceit insertsafter the
#version lines. We wrote a programthat processedall 27
gigalytes of SCCSrecods for the software projectuncer
consideationandidentifiedthreeattributesfor eachdelta:

1. numter of #versionlines;
2. numker of #versionlineswith VE signature;

3. numter of #versionlineswithout VE signature.

DRAFT to appea in IEEE Transactionon Softwae Engneering 9

This information was usedto identify the deltaswherethe
usageof VE wasnotlikely to have impact(i.e., thosedeltas
that containno #versionlines), andwherethe usageshoud
have animpact(presencef #versionlines).

As definedin Section2, an MR typically consistsof sev-
eraldeltas.lt is possiblethat someof the deltasin one MR
have a VE signatue andothersdo not. This does nothapp@e
frequently: only 1.8% of the MRs hadthis propertyin the
entire datasef 600000 MRs andin the analyzedsample
of 3,400MRs (we selectedthis sampleof MRs by choas-
ing a subsebf developersasdescribedbelon). We marked
suchchangedor analysispumposesas madeby hand since
accordng to our null hypothesig(VE doesnotreducedevel-
opereffort for changsinvolving #versionlines) suchmark
ing shouldnothave ary impact.If, however, VE rediwcesde-
veloper effort, thensuchmarkirg would only make it more
difficult for the VE effectto shov up asstatisticallysignifi-
cant.

5.2 Developer selection

The variability in prgect size,developer capabilityand ex-
periercearethelargestsource of variahlity in softnarede-
velopment(see,for examge, [5, 10]). The effectsof tools
andprocessareoftensmallerby an order of magnitude. To
obtainthe shargstresultson theeffect of agiventool in the
presencef developervariability, it is importart to have ob-
senatiors of the samedeveloper changng files both using
thetool andperformingthework without theaid of thetool.

We focusedon developerswho madesubstantiahumters
of changesequiing modfications of #version lines, both
with andwithout the VE tool. Also it is prefgableto con-
sider developersthat had similar work profiles (i.e., made
similar numtersof changs). Giventhe consideablesizeof
the versim history dataavailable,bothtaskswereeasy:we
selecteddeveloperswho madebetween300 and 500 MRs
in the six yearperiodbetween1990and19% andhadsim-
ilar numbers(morethan40) of MRs dore with andwithout
VE. This resultedin a sampleof 9 developers. Reducimy
the nunberof developersincreaseshe standad errorof the
estimatectoeficientswithout substantiallychangimy the es-
timates.

5.3 Effortdrivers

We fitted two mocels basedon Equation 1 (seeSection4),
estimatedstandarderras using the jackknife method and
obtaina the following results,assummarizedn Table5. In
thefirst modelwe included MR measuesthatour previous
expelienceindicatedmight affect the effort. We fit the sec-
ond mockl usingonly a minimal set of predictas that we
found significantin thefull model. Theexactregressionfor-
mulasfor eachmocel were:

E(effort) = #delta®* x #linesadded? x

BruG X BcLEANUP X BINSPECT X

YHAND X YNONE X H ODeveloper;
i

E(effort) = fua X YHAND X YNONE X H(sDeveloperi

K3

In these formulas, we use Bgyg as a shorthad for
exp (I(BUG) log feuc), whereI(BUG) is 1 if the MR is
adefect fix andO othewise.

Thependty for failing to useVE in the presencef #ver-
sionlinesis the coeficientyg 4np, Which indicatesanin-
creasef abou 40%to 50%in theeffort requiledto compete
an MR. (This coeficient was statistically significantat the
5%level). Restatedif adeveloperperfamsthreechangsto
codeinvolving #versionlinesin agivenamoun of time with-
outVE, the samedeveloperusingVE couldperfam, onthe
averag, four changsof the samesizeandtypeto the same
code. At the sametime, chargesperformedusingVE were
of the samedifficulty (requiring a statisticallyinsignificant
(1 — vyvonE =~ 25%) increasean effort) aschargeswith no
#versionlinesatall. Thereis alarge uncertaity in the esti-
matedcoeficients: the 95% corfidenceintenal for yganp
is [1.01, 2.1] for thefull mockl (effort savingsrangebetween
oneand110%)and[1.04, 2.2] for theminimal model(effort
savingsrangebetweerfour and120%).

To getarouch estimateof thetotal costsaszings from the
usageof the tool we selectedMRs involving VE #versian
lines for eachyear VE was used(seeFigure5). We then
selectedhe developerswho worked on theseMRs and for
eachdeveloper, calculatedthe ratio of VE MRs to thetotal
numter of MRs they completedhatyearto appraimatethe
effort requred for VE MRs. To obtan therough estimateof
effort savingswe multiplied the estimateof thetotal VE MR
effort by 40%to obtainyealy savingsovertheyearsstarting
from 1991 Theestimateof the total effort savingsfrom VE
over its entirelifetime is 1400PersonYears(PY) while the
total effort to createandmaintainthetool over thesametime
periodwasbelov 10PY.

We were successfuln selectingsimilar developers: the
ratio betweerthelargestandsmallestdeveloper coeficients
was1.65for thefull modeland1.68for the minimal mocel,
which would meanthat the leastefficient develgper would
requie 68% additioral effort to make achangecomparedto
themostefficientdeveloper, but thejackkrife standardrrors
indicatedthat a differenceof this sizewasnot large enaugh
to be distinguishale from randm fluctuatiors (i.e. there
was no statisticallysignificanteviderce that the developers
differed). This factindicates that we weresuccessfuin se-
lecting“similar” developersfor oursample.

Thetypeof achang wasa significantpredictorof the ef-
fort requiredto makeit, asbugfixeswere50%moredifficult
than compaably sizedadditiors of new functiorality. Im-
proving the structureof the code,the third primary reason
for changg(see for examge, [32]) wasof compaablediffi-
culty to addingnew code,aswasa fourth classof changs,
implemerting codeinspectiam suggstions.

Thecoeficientsa; andas, werenotsignificantlydifferent

DRAFT to appea in IEEE Transactionon Softwae Engneering 10

Model Coeficient | Estimate| p-va | 95%CI
o 0.15 0.4 —-.2,0.5
o) -0.08 0.3 -.2,0.1
Beua 1.44 0.01 | [1.1,1.8]
Full Boreanup | 0.6 0.4 []0.2,2]
PinsprcTion | 0.7 0.8 | [.01,7.6]
YHAND 1.46 0.04 | [1.01,2.1]
YNONE 0.7 0.3 0.4,1.3]
BruaG 15 0.00 | [1.2,2]
Minimal YHAND 1.5 0.03 | [1.04,2.2]
YNONE 0.8 0.3 0.4,1.4]

Table5: Resultsrom model fitting. Cl = confiderceinterval

from zeroin the full model,sothe sizemeasueswereomit-
tedfrom theminimal model. Thatis, the sizeof achangeas
measuredtby thenumberof linesaddel andnunberof deltas
did nothavea particdarly strongeffect ontheeffort required

to male it, given the developerandthe type of chang. We
believethattheothe variablesin themodé, primaily devel-

operandthe purpcseof thechangewerethe primaly factors
determiring the effort spent. While we believe that sizeis
alsoanimpottantvariable, it is determired(to ahighdegree)
by the former two factors.Furthemore,smallchangssuch
as MRs aremuchmore uniform in sizethanlarge charges
like releaser features, so the role of sizein deternining

effort for MRs may be not asimportantasin caseof larger
changs.

5.4 Validity of theresults

To ensue thatthe estimateceffectswerevalid, a numter of
stepsweretaken.

First, we took a consevative appoach(uncer the null hy-
pothesis)to markall changeghatcortaineda deltawith the
VE signatureanda deltawithout the VE signatue asdore
by hand

Secondweselected balanedsetof developerswith sim-
ilar charge profilesto redice inhetent variahlity in deve-
operperfamance.This wasachiered by choosingdevelop-
erswho were actively charging the cock in the considerd
six yearperiad (1990to 19%) andmakingsimilar numkers
of changs(300to 500)in thatperiod

Third, we madesurethetool effect would beidentifiable
from the samplegiven otherkey factorsaffecting thechang
effort - size,type,anddeveloper. In linearregressionthisis
refered to ascheckng for collinearity Ignoring suchrela-
tionshipscoud leadto situationswvherethetool effect would
be indistinguishablefrom otherfactorsaffecting changeef-
fort.

We first checledfor interactiors betweendevelopersand
VE usage. Suchinteractims occur frequently (developers
tendeitherto useVE or notto useVE). Fromthe setof de-

Coeficient | Estimate| p-val | 95%CI
“YHAND 1.5 .04 1.01, 2.2]
YNONE 0.8 0.37 0.5, 1.4]

Table6: Resultsfor amockel with notypefactor

velopersselectedn thesecondstepwe chaseonly thosethat
had similar numters of changs with andwithout VE and
perfamedat least40 changs undereachcondtion. This
browhtusto thefinal sampleof 9 developerswe usedin the
analysis.

The relationshipbetweenthe tool usageand the size of
a changewas insignificant. However, the interaction with
the type of chang was strong. New codewas morelikely
to be dore without VE, while bug fixesweremore likely to
be donewith VE. This interactioncorfounds the tool effect
with a factorknown to influencethe difficulty of a chang.
However, this intera¢ion makesit moredifficult to find sig-
nificantpositive effectsof VE, sincebug fixesrequie more
effort andaremoreoftendore usingVE.

To veiify thatthe interadion is not affecting the results,
we fitted the modelwith no factorfor the type of chang.
The resultsarein Table 6. The estimatedVE coeficient
did not chang@ from the origind modelin Table5, but the
variarce of the estimateincreasedindicaed by wider con-
fidenceinterval) becaus®f the addtional variability caused
by notadjustingfor the chargetypefactor

Fourth we validatel the models using the jackkrife
method We comparedtheeffectof VE for chamgesthathave
similar values of the primary costdrivers (developer, sizeof
chang, type of chang). Thesedrivers were found to af-
fect the effort significantlyin [13]. Usingthe jackknife, we
measuredhe significanceof the effects givenby the mocel.
More detailson validation the mockl fitting andthe algo-
rithm arein [13].

Despiteall thesecheckstheresultswarrart somecaution
Although the selecteddevelopers perfamed similar num
bersof changswith andwithout VE, the patternwas not
independentof time. Eight out of nine developersgradually
movedtowardsexclusive usageof VE, while oneabandoed
usageof thetool overthecorsideredberiod.Becausef this
imbalarce,thetool usagdactoris confaundedwith time and
otherfactorssuchasnaturaldecayof the softwarearchtec-
ture. Becausef the natureof the obserationalstudy other
confaundirg factos might be presenhdespiteall the precau
tionstaken.

6 Development Interval and Change
Quality

In addition to investigatingthe impactof VE on the effort
experdedfor singleMRs, we investigatedthe impactof VE

DRAFT to appea in IEEE Transactionon Softwae Engneering 11

400
I

Days
300
L

200
I

—— All features (with #version lines)
——————— VE features
---- Non VE features

T T T T
1992 1994 1996 1998

Years

Figure7: MR-derived featureintenal smootted overtime.

onfeatue intend andonthequality of thechanges.

6.1 Impact of VE on Feature Interval

While MR interval is animportart partof an overall devel-
opment intenal, it is not obvious how to combne individ-
ual MR intenals to obtainthe total intenal for a custoner
delivery. Consegeantly, we decidel to directly measurghe
interval for the softwarefeatues (or work itemsasthey are
calledin the consideed prgect). The softwarefeaturesare
deliveredto customersandbring reverue, therebre thereis
an essentiabusinesmeedto redue thetime it takesto de-
velopafeatue.

Eachfeaturein the projectwasrelatedto a set of MRs
anddeltas.We calculatedhe interval of eachfeatue asthe
time betweerthefirst andthelastdeltaproducedfor thatfea-
ture. Suchcalculationdoesnot corstitute the entirefeatue
interva (which includeswork on requiements designand
testing). To calibrae the MR-derived interval we obtainel
the information on full featureinterval for 63 regular fea-
turesfrom two recentreleasef the prodict. The intenal
was measuredetweenthe processstepsof “detailed esti-
mationcompeted” and“begin managd introduwction” of the
correspndirg releaseThemeanof thefull intervd was570
days. The medianratio of MR-derived interval to full inter
val wasappraximately 0.6 indicatirg thatmorethanhalf of
full featue intenal is capturedby the MR-derived interval.
Thesefindingsaresimilarto independentestimatesnadeby
a product teamtasled with redwcing interval in the featue
releases.

GiventhatVE redwceseffort for individual MRs, it is nat-
ural to exped thatit would redice MR interval and, possi-
bly, featureinterval. To testthis hypothesiswe compared
the MR-derived featureintenal for featureswhereVE was

Variabe Estimate| Std.Error | p-value
Intercep (81) 2.94 0.06 < 0.01
log Size (82) 0.58 0.01 < 0.01

VE (83) -0.46 0.06 < 0.01

Table7: Featureéntenal regression.

exclusively usedfor changs involving #versia lines ver
susthe rest of the featues involving #version lines. First
we excludedfeatureghatwerestartedafterDecemier 1998
becausé¢hesefeatureamight not be completedyet. We also
excludedfeatuesthatdid notmodify #versionlinesandvery
old featuresstartedbefore 1992 becaus&/E wasnot exten
sively usedthen, andfeatureintenals tendedto be longer
(seeFigure7), therebypoterially increasinghe VE effect.
The 436featueswhereVE wasexclusively usedhada me-
dianMR-derivedintenal of 149daysandthe2779otherfea-
tureshad a medianMR-derived interval of 442 days. This
comparisonis slightly biasedbecase the nontexclusively-
VE featuestendedo belarger, their sizeaccounting for the
partof thelongerinterval. Largerandmorecompex features
aredoneby largerteamsandaremuchlesslikely to have all
participantsbeexclusive VE users.

To perfam a more precisecomprison we fitted a re-
gressiormodelincluding featuresizein termsof nunber of
deltas.Theregressionequatim:

log Inteval = 81 + - log Size+ §5VE + error,

wherelntewval is measurd in days,Sizein numkber of delta
andVE is anindicatorof whetherVE wasusedexclusively
for chamesinvalving #versionlines. The sizeandintenal
weretransfornedto make their distribution closerto aGaus-
siandistribution. A conputed R value of 0.62 indicaesa
goodmockl fit andthe ANOVA tablegivenin Table7 shows
a highly significantimpactof the VE tool. For examge, a
predided interval for a mediansizedfeatue of 137 deltas
wouldtake 176dayswith VE and279dayswithoutVE. Us-
ing our estimatesof the full featureintenal we would get
appraimatelya (279 — 176) /176 * 0.6 = 35% increasédn
full featureinterval for featureghatdid not exclusively use
VE. It is worth noting, thatthis nunmberis very similar to the
estimateof thedeceasen individual MR effort.

6.2 Impact of VE on MR Quality

DevelopersusingVE have asimplerview of thesourcecode
withouttheplethoraof #versiondiredives. This leadsto the
hypothesighatVE mayreducehelik elihoodthata software
chang wouldfail afterbeingdeliveredto the customer
The projed understudy haskept the information on all
MRs that were deliveredto customes as patchas or “soft-
ware updates”. In eachcasewhen a patchfailed, a root
causeanalysiswas doneandthe MRs that causedhe fail-
ure wereidentifiedandrecorad (for more detail see[21]).

DRAFT to appea in IEEE Transactionon Softwae Engneering 12

To evaluatethe effect of VE on softwareupdatefailures,we
calculatedhefractionof MRs containirg #versiondiredives
thatfailedwhendelivered in softwareupdatesiMRs doneen-
tirely usingVE (1.45%) andthe samefractionfor MRs dore
not entirelywith VE (2.94%). Thedifferenceindicatesthat
VE might reducethe probability thatan MR would causea
failurein a softwareupdate.

We thenapplieda morerigorousfailure prabability mod
eling, asdescribedn [21], but the nonusageof VE wasnot
a significantpredctor that an MR would causea software
updae to fail. However, VE might affed thatprobability in-
directly becausehe featueswith exclusive useof VE tend
to be smaller(have fewer deltas,addfewer lines, andtouch
fewer subsystemsand the size of an MR is an important
predidor of its failure prokability (with larger MRs having
highe probability to fail).

7 Software Tool Evaluation Scenarios

In this section,we considerhow to gereralizethe process
usedin our casestudyto othersoftware developmen envi-
ronmentsandsoftwaretools.

In our casestudy the effort analysis(Sections4 and5)
madeuseof geneic chargedatathatarepresentn any mod
ernversioncontrd system(asdescribedn Section?). Thus,
the repeatabilityof our expeimentin other settingsrelies
primaily on the ability to correlatetool usagewith chang
history. Theparticuarsof the VE tool providedavery direct
link betweertool usageandcharges,for two reasos:

o VE is aneditorandis useddirectly to charge software;

¢ VE leavesatracebecase of thetrailing white spacet
insertsattheendof #versionlines.

Usageof mary othersoftwaretools canbetracked. Some
toolsmodify only a certaintypeof sourcecodefiles. Theus-
ageof anunberof toolsis monitaedfor licensecompliarce
purpose(recoding of who andwhenusedthetool). Finally,
it is oftenrelatively easyto instrumen thetoolsto log their
usage.

Marny softwaretools,suchasdeluggers,sourcecodeana-
lyzers,profilers,etc.,areusedto examine andanalyzesoft-
ware sourcebut not to modify it and consequetly, do not
leave tracesin the sourcecode. This is not terribly prob
lematic, sincesoftwaretools canbe instrumentd to recod
whenthey areappliedto a softwareentity. To establishre-
lationshipsbetweentool usageand a changewe mustrely
ontempoal locality asa substitutdor causality Thatis, we
mustassumehata changemadeto softwareentity e attime
t by developerd is (patially) aidedby softwaretoolsthatde-
veloper d appliedto e (or entitiesrelatedto e) in somewin-
dow of timebefaet. Thisassumptiofis quitereasoablefor
mary softwaretools suchaserra detectos anddehuggers,
thoudh it may not apply as well to genera progam com-
prehasiontoolswhich couldbe usedfar befae achang is
made.

Thisleadsusto thefollowing process:

1. Via automaed nondintrusive monitoing, record the
tools a developer usesin the course of softwaredevel-
opmen andthesoftwareentitiesto whichthey wereap-
plied.

2. Correlatethe moritoring informationrecoraed in step
1 to the modfications to software entities that are
recorakd by the versioncontol system,usingtempo
ral locality to link the apgication of a softwaretool to
entity e (andrelatedentities)to modficationsto e.

3. Usethe effort analysisalgoritim of Section4 on the
datafrom stepsl and2 to estimatehow the useof the
tool affecteddevelopereffort, codequality, interval, etc.

As describedn Sectionb, it is important to control con-
founding variales suchasdeveloperexperienceandtype of
chang in the above process. In othe ervironmens, addi-
tional variades may comeinto play.

This apprachcouldbeusedto evaluatenew toolsaswell
asexisting tools. To assesshe impactof a new tool (or an
enhamementof an existing tool) the usagedatashouldbe
collectedfrom a setof developerswho usethe tool befae
thelarge scaledeployment. Whenthe effectsof thetool us-
agebecone apmarentthe tool may be recomnendedfor the
wide-scalededoyment. The effectsshouldbe estimatechy
comparing the changes doneby the developersbefae and
aftertheintroductionof atool.

The approa&h shouldwork well for organizationswhere
developerswork on a singleprojed at a time until compe-
tion. In someorganizatiors the codechamgesarerecaded
in the version contol systemonly at the time of compe-
tion. In suchcaseghe startof an MR shouldbe recaded
asthe dateof completio of the previous MR doneby the
samedeveloper In organizatims wheredeveloperswork on
multiple projectssimultaneasly theappoachmightrequre
moresubstantiamodificatiors.

The mostimpartant assumptionis that the effort a de-
veloper spendgluring a calendamonth (or more precisely
the cost of developer to an organizationduring a calendr
month doesnot systematicallydependonthe MR predicta
variables usedin the mockl. For examge, if we includethe
type of chang in themodel,it is impartantthatthetotal ef-
fort spentduring montls whenadevelgperonly fixesdefects
would not be systematicallydifferert from the total effort
spentduiing morthswhena developeris implemerting new
features. If thisis the casejt is importart to collectreliable
montHy effort data. Otherwise the assumptia of constant
effort permorth is sufficient.

In caseswvherenew projectsor inexperienceddevelopers
areinvolved,it isimportari to include calend@rtime asapre-
dictorin themodelto account for develgperlearningeffects.
Includng calendrtime asapredicta is alsoadvisablevhen
therearesignificantchangesn the projectduring the study
period

DRAFT to appea in IEEE Transactionon Softwae Engneering 13

In somecaseghetoolsaffectthe natue of the changedo
the sourcecode(for exanple, whenvisualenvironmentsare
usedto gereratethe code) The methodproposedherewas
extenced to suchmore geneal useof softwaretechndogy,
in particularto assesshe impactof the useof application
engireeringervironmentsin [30, 3].

8 Reated Work

Thereis asubstantiahmoun of work onevaluatirg software
tools,whichfalls into threebroad cateyories: contiolled ex-
perimetts on software tool use, software tool assessment,
andcasestudiesof softwaretool use.We alsoreview related
work on effort estimationin softwareprojects.

8.1 Controlled Experiments on Software Tool
Use

Controlledexperimentson softwaretools typically usetwo
groys to evaluatea tool on a given task: a study group
thatusesthe tool anda contrd groyp thatdoesnot usethe
tool. Suchexpeimentshave beendoneon program slicing
tools[17], algoiithm animatio tools[16], andstructueded-
itors [23], to namebut a few. The studyof Ormeind [23] is
interestingbecase of the detailedlevel of tool instrumema-
tion: alog of all keystrdkesenterednto a structued editor
for Prologwasrecoragedandusedo identify edits,edittimes,
anderrois made.Thereis ahugebody of work in theHuman
Compuer Interactian comrrunity thatdealswith therelated
issueof userinterfaee designand evaluation. Many such
studiesevaluatehow differentuserinterfacesaffecttaskper
formance[12, 28]. Of course,our studyis not a contrdled
expetiment, althowgh we did control for developer variakil-
ity (seeSection5). We have analyzedhistoricalprojectdata
(time sheetata,andversioncontrd data),while contolling
for corfoundng variabes.

8.2 Software Tool Assessment

Softwaretool assessmens anindustry of substantiakize.
As summarizd by PostorandSexton [25], thesoftwaretool
assessmerrocessconsistf thefollowing basicsteps:

1. identifying andquariifying userneeds;
2. establishingool-selectiorcriteria;

. finding availabletools;

A W

. selectingoolsandestimatingheretumn oninvestment;

5. acquirirg atool andcustomizingt to betterfit the ervi-
ronnment;

6. monitaing of tool usageto determire the impactof a
tool.

Many tool assessmentrocessesand standadls (suchas
IEEE Standardl175) focus on the use of forms to gatrer
datato guidethefirst five stepsof theabove proess[22, 25|.
Theseinclude forms for needsanalysis,tool-selectioncri-
teria, tool classification,and tool-to-organization and tool-
to-tod relatiorships. Our work complenents suchwork
by addessingthe final poirt (6) abore. We usea highly-
automaedtechniaie combiring tool usageanformationwith
chang effort analysisto estimatetheimpactof atool in an
organization

Brown andWallnau[7] presentframework for evaluatirg
softwaretechnolgy. They obsene that“techrology evalua-
tionsaregeneally ad-loc, heavily relianton the evaluatian
staf’s skills andintuition”. Theirframework is basednthe
ideaof “techndogy deltas”,by which they meantwo things:
how onetool differs from anotherandhow the differences
betweertools addessspecificneed. In our casestudy the
“delta” betweenVE anda standardext editoris the ability
to managetversia directivesfor the developer.

8.3 Case Studies

Kitchenram, PickardandPfleegger preseha framewvork and
guiddinesfor perfaming casestudiesof softwaretoolsand
method [15]. They obsene thata casestudy may be pre-
ferredover a formal experimentif the effect of a new tool
canna be identifiedimmediately which was certainly the
casewith the VE tool. Our casestudymadeuseof historical
datato identify theimpactof the VE tool over mary years
of use. Exactlyhow long oneneedgo collectdatain order
to malke suchanassessmerns$ anopenquestion If thetool
effectis very strong evenafew monthsmaysuficeto obtain
a statisticallysignificar result,aswasshovnin [29].

Bruckhaus et al [8] presenta case study of how
requilements-maagementools affected the productivity of
requiementsplannas, acrosssereral projects. Their goal
wasto find which projectswould berefit from new tools. In
this study they measued productivity (afterthefact) by the
ratio of the number of featuresn a projectto total effort ex-
penckdin the project(numberof minutes) They examinel
how the presence/aenceof atool, prgectsizeandsoftware
process (simpleor comgex) affect prodictivity. Measurirgy
at this macrolevel malesit difficult to separatéhe impact
of thetool from otherconfoundng variales (suchasexpe-
rience,andsizeof thefeatue). Projectandprocesscouldbe
included asfactos in ourmodel.

8.4 Effort Estimation

Previous work on developing modelsof effort (of which a
recentexampge is [27]) hasdwelt on predictirg the effort
that will be requiredto completea nascentprgect. The
COCOMO mockl [6] and function poirts [1] are frequent
contritutorsto thesepredictiors. Our prodem is substan-
tially differentasit workswith smallerchangefMRs asop-
posedto projects). Also, we derive estimatesof the effort

DRAFT to appea in IEEE Transactionon Softwae Engneering 14

thatwasrequiredfor chargesthatwerepartof alreadycom-
pletedprgectsinsteadof conceitratingon predction.

Theworkin this paperusegheeffort estimatioralgorithm
introducedby Graves andMockus [13], which relateseffort
estimatedo the sizeof an MR sizeandthe type of chang.
They latervalidatedthe algorithmtheoreically andvia sim-
ulations[14]. An earlierversionof this papenf2] introduced
how to usetheeffort estimatioralgoiithm to evaluatethe ef-
fectof toolin adevelopmentenvironment. Thecurrent pager
builds on this previous work by providing a morethoraugh
expeiimentalevaluation anda moredetailedexplanationof
our usageof the effort estimationalgorithm In addition, we
perfamednew expeiimentsto evaluatethe effect of VE on
interval andquality.

9 Conclusions

We have condicteda detailedanalysisof the usageof Bell
Labs’VersionEditor (VE) tool basednanew effort estima-
tion algaithm that usesversioncontrol dataandtimesheet
data. Our analysisfound that the VE tool, asusedin Bell
Labs,hasasignificanimpactondeveloperproductivity. The
useof versioncontol data,which is geneally availablein
ary softwaredevelopment ervironmer, andthe presese of
atool “witness”in this dataallowedfor a fine-grainedanal-
ysis of tool usagespreadover a nunber of tool users. The
methoalogy presentd herecanbe (andhasbeen apgied
to othersettings,but caremustbe takento contiol for con-
founding variables,which canvary with the setting.

Acknowledgments

ThisresearctwasperformedwhenDr. Graveswaswith the

National Institute of StatisticalSciencesand Bell Laboia-

toriesandDr. Ball waswith Bell Laboiatories. We thark

all reviewersfor their insightful suggestios. This research
was suppated in part by grarts SBR-952926 and DMS-

9208758to the Nationallnstituteof StatisticalSciences.

References

[1] A. J. AlbrechtandJ. R. Gaffney. Software function,
sourcdinesof code anddevelogpmenteffort predictian:
asoftwaresciencevalidation IEEE Trans.on Softwae
Engireering 9(6):638-648,1983

[2] D. Atkins, T. Ball, T. Graves, and A. Mockus. Us-
ing versioncontrd datato evaluae the effectiveness
of softwaretools. In 199 Internatioral Confeence
on Softwae Engireering page 324-333 ACM Press,
199.

[3] D. Atkins, A. Mockus,andH. Siy. Measuringechnd-
ogy effeds on softwarechangecost. Bell LabsTechni-
cal Journd, 5(2):7-18 April-June200Q

[4] D. L. Atkins. Versionsensitve editing Changehis-
tory as a progammingtool. In Proceeding of the
8th Confeenceon Softwae Configiration Manage-
ment(SCM-8) paged 46-157.Springer-Verlag LNCS
143, 1998

[5] V. Basili and R. Reiter An investigationof human
factorsin software development. IEEE Computer
12(12):21-38,Decembei 979

[6] B.Boehm.Softwae EngireeringEcoromics Prentice-
Hall, 1981

[7]1 A. Brown andK. Wallnau. A framework for evaluat-
ing softwaretechndogy. IEEE Softwae, page 3949,
Septembr 19%.

[8] T.Bruckhaus,N. Madhayji, I. JansserandJ.Henshav.
The impact of tools on software prodictivity. IEEE
Softwae, page29-38, Septembet 996

[9] J.O. Coplien,D. L. DeBruler andM. B. Thormpson.
The delta system: A nortraditional appro&h to soft-
wareversion manageent. In Internatiocnal Switding
Sympsium March1987.

[10] B. Curtis. Substatiating progammervariablity. In
Proceedigsof theIEEE 69, July 198L.

[11] A. P. Dempster N. Laird, and D. B. Rubin. Maxi-
mumlik elihoad from inconpletedatavia theemalgo-
rithm. Journal of the RoyalStatisticalSocietyB, 39:1-
38,1977

[12] H. Gottfried and M. Burnett. Progammingcomple
objectsin spreagheets: An empirical study compa-
ing textual formula entrywith directmaniplationand
gestures.In Proceeding of the Severth Workshopon
Empirical Studiesof Programning. Ablex Publishirg
Co.,1997

DRAFT to appea in IEEE Transactionon Softwae Engneering 15

[13] T. L. Gravesand A. Mockus. Inferring charge ef-
fort from corfigurationmanagmentdata. In Metrics
98: Fifth Internaional Sympsiumon Softwae Met-
rics, pages267-273, BethesdaMaryland November
19%8.

[14] T. L. Gravesand A. Mockus. ldentifying productiv-
ity drivers by modding work units using partial data.
Technametrics 43(2:168-179,May 2001

[15] B. Kitchenhan, L. Pickard andS. L. Pfleeger Case
studiesor methodandtool evaluation. IEEE Softwake,
pagess2-62,July 19%.

[16] A. Lawrerce, A. Badre,andJ. Staslo. Empirically
evaluating the use of animationsto teachalgoritrms.
In Proceeding of the 1994IEEE Symposiunon Visual
Languages pagesA8-54, Octoberl 994

[17] J.Lyle andM. Weiser Experinentson slicing-tased
deluggingtools. In Proceeding of the Fir st Workshop
on Empirical Studiesof Programming (Jure 1985).
Ablex PublishingCo., 1986

[18] P. McCullaghand J. A. Nelder Genealized Linear
Models,2nded. ChapmarandHall, New York, 1980.

[19] A. K. Midha. Softwareconfigurationmanagmentfor
the 21stcentury Bell Labs Tedhnical Journd, 2(1),
Winter1997.

[20] A. Mockus andL. G. Votta. Idertifying reasondor
software changs using historic databases.In Inter-
natioral Confeenceon Softwae Maintenance pages
120-13Q SanJose,California, October11-14 200Q
ACM press.

[21] A. Mockus andD. M. Weiss. Predictingrisk of soft-
warechamges. Bell Labs Tedhnical Jourmal, 5(2):169-
180 April-June 200.

[22] V. Mosley. How to assessools efficiently andquarii-
tatively. IEEE Softwae, pages29-32, May 199.

[23] T. Omeral andL. Ball. An empirical evaluation of
TEd, a techniqueseditor for prolog progamming In
Proceedigs of the SixthWorkshopon Empirical Stud
iesof Programming Ablex PublishingCo.,1996

[24] A. Pal and M. Thonpson. An adwanced interface
to a switching software versionmanagement system.
In Seventhinternaional Confeenceon Softwae En-
gineeringfor Telecommunidéons Switding Systems
July 1989

[25] R.PostorandM. Sexton. Evaluaing andselectingest-
ing tools. IEEE Softwag, pages33-42,May 1992.

[26] M. Rochknd. The sour@ codecontrd system.|EEE
Trans.on Softwae Engireering 1(4).364-370,1975

[27] M. Sheperd and C. Schofield Estimatingsoftware
praecteffort usinganaloges. IEEE Trans.on Softwae
Engireering 23(12):73%-743, Novenber1997

[28] B. Shneiderran. Designingthe User Interfac (2nd
Edition). Addisan-Wesley, 1991.

[29] H. Siy andA. Mockus. Measurig domainenginering
effectson software codingcost. In Metrics 99: Sixth
Internaional Sympsiumon Softwae Metrics, pages
304-311, BocaRaton,Florida,Novenber1999

[30] H. SiyandA. Mockus. Measurirg domainenginering
effectson software codingcost. In Metrics 99: Sixth
Interndional Sympsiumon Softwae Metrics pages
304-311, BocaRaton,Florida,Noverrber4—61999.

[31] G. Snelting. Reengineéng of corfiguratiors based
on mathenatical concep analysis. ACM Transactions
on Softwae Engireeringand Methoalogy, 5(2):146-
189 April 19%.

[32] E. B. Swanson. The dimensiols of maintenane. In
2nd Conf on Softwae Engneering pages492-497,
SanFranciscoCalifornia,1976.

