
UsingVersion Control Datato EvaluatetheImpact of SoftwareTools:
A CaseStudyof theVersionEditor

�

David L. Atkins,
�

ThomasBall,
�

ToddL. Graves
�

andAudrisMockus
�

�
Universityof Oregon

�
MicrosoftResearch�

LosAlamosNationalLaboratory
�

AvayaLabsResearch

October9, 2001

ABSTRACT

Softwaretools canimprove the quality andmaintainability
of software,but areexpensive to acquire, deploy andmain-
tain, especiallyin large organizations. We explore how to
quantify the effectsof a softwaretool onceit hasbeende-
ployedin a developmentenvironment. We present aneffort-
analysismethod thatderives tool usagestatisticsanddevel-
operactionsfrom aproject’s changehistory(versioncontrol
system)andusesanovel effort estimationalgorithm to quan-
tify theeffort savingsattributable to tool usage.

We apply this methodto assessthe impactof a software
tool calledVE, a version-sensitive editorusedin Bell Labs.
VE aidssoftwaredevelopersin copingwith therampantuse
of certainpreprocessordirectives (similar to #if/#endif in C
sourcefiles). Our analysisfound that developerswereap-
proximately40%moreproductivewhenusingVE thanwhen
usingstandard text editors.

Keywords

softwaretools,version control system,effort analysis

1 Introduction

While softwaretoolshave thepotential to improve thequal-
ity andmaintainability of software,acquiring,deploying and
maintaining a tool in a largeorganizationcanbe anexpen-
sive proposition. We explore how to quantify theeffectsof
a software tool in an ongoing large-scalesoftwareproject.
Wedescribeacasestudyof theimpactof aversion-sensitive
text editorcalledVE. We assessthe impactusinga method
that relatestool usagestatisticswith effort estimatesbased
on analysisof thechange historyof a softwareproject.The
valuein performingsuchanimpactanalysisis to createdata�

This work was done while all four authors were membersof the
Software Production Research Department in Lucent Technologies’ Bell
Laboratories.

from which subsequent decisionsabout the tool usecanbe
mademoreeffectively (e.g., to keepa tool, to deploy it more
widely, to rewardits use,to publish resultsthatwould influ-
enceotherpotentialadopters,etc.)

Our work is basedon two observations. The first obser-
vationis thata majoreffect of a softwaretool, be it a docu-
mentationtool, sourcecodeeditor, codebrowser, slicer, de-
bugger, or memory-leakdetector, is to helpa developerde-
terminehow to modify asoftwareentityor directlyto aidthe
developerin makingmodifications. Thesecondobservation
is that the change historyof a softwareentity (i.e., the ver-
sioncontrol dataaboutthemodificationsto theentity)canbe
usedto estimatetheamount of effort a developerexpended
on a particularmodification or setof modifications,aswell
asmeasures of the overall time (interval) taken to develop
a softwarefeature. To obtainaccurateestimatesof tool ef-
fects it is often important to have effort estimatesat a fine
grained change level, however, it is unreasonableto expect
that developerscould always accuratelyandefficiently re-
port effort for individual changesthey commit to a version
control system

�
.

Theseobservationsleadto a simpleprocessfor assessing
theimpactof asoftwaretool:

1. Recordthetoolsa developerusesin thecourseof soft-
ware developmentand the software entities to which
they wereapplied.

2. Relatethemonitoring informationrecordedin step1 to
themodificationsto softwareentitiesthatarerecorded
by theversioncontrol system.

3. Using the data from the previous two stepsand the
change effort estimationalgorithm describedin Sec-
tion 4, analyze“similar” developersandmodifications

��
In Section4 we introduceanalgorithmthatestimateseffort for individ-

ual changes from information available in a versioncontrol system.	
Section 5 qualifies andquantifies the notions of “simil ar” developers

andmodifications.

DRAFT
 : to appear in IEEETransactionsonSoftwareEngineering 2

to estimatehow theuse/non-useof thetool affectedde-
veloper effort andoverall interval.

We appliedtheseideasto a real-world example from Lu-
centTechnologies. We presenta casestudyof a software
tool thatprovidesanelegant solutionto theproblemof ram-
pantuseof certainkindsof preprocessordirectives(suchas
#if/#endif in C sourcefiles). Thesedirectivestypically
areusedto createmany different variants,or versions,from
a singlesourcefile. A developereditingsuchfiles mustbe
careful to make changesto theappropriateversion, soasnot
to interfere with other versions [31]. The solution to this
problemis aversion-sensitiveeditor(VE) thathidesthepre-
processingdirectivesfrom a developer. VE allows a devel-
operto editaparticular versionof thesourcefile (i.e.,aview
of theunderlying ASCII file in which certainpreprocessing
directiveshavebeen“compiled” away). As theusereditsthis
view of thesourcecode,VE translateseditingoperationson
theview backinto theunderlyingsourcefile.

Our primary hypothesisis that the VE tool reduces the
effort neededto make changes involving preprocessordi-
rectives. Our secondary hypothesisis that the usageof VE
would leadto shorterdevelopmentintervals. We test these
hypothesesvia aquantitativeanalysisof developereffort and
development interval basedon the change historyof a very
largesoftwareproduct in which bothVE andothertext ed-
itors wereused.For eachchangemadeto thesoftware,we
wereableto determine whetheror notVE wasusedto make
the change. By combining this informationwith the devel-
opereffort analysis,we found thatdeveloperswho usedVE
wereonaverage40%moreproductivethanwhenusingstan-
dardtext editors (whenchanging files containing preproces-
sor directives). We alsofound a corresponding decreasein
thedevelopmentinterval of new softwarefeatures.

Through our casestudy, we illustratea number of prob-
lemsthatmustbesolvedto arrive at anaccurateestimateof
how softwaretoolsimpactdevelopereffort. Primarily, these
areproblemsof how to control for key sources of variation
suchas:� Developer work-styleandexperience;� Sizeof changesto software;� Type of changes (new feature, bug fix, code cleanup,

codeinspection).

Our work is complementary to the analysisof tools in
controlled settings[17, 16, 23] and software tool assess-
ment [25, 22, 7]. Controlled experimentson tool usecan
yield valuable insightsabout the utility of a tool on small
scaleexamples; our work seeksto addressthe ongoing im-
pact of a tool in an industrial development environment.
Softwaretool assessmentcomparesvarious tools to onean-
otherandattemptsto predicttheimpactof atool onaproject
before deployment. Our work complements such assess-
mentsby providing informationon tool impactduring de-
ployment.

The paperis organizedas follows. Section2 provides
background on versioncontrol systemsandthe problem of
preprocessordirectivesin theparticularproject under study.
Section3 describes theversioneditor (VE) tool andhow it
addressestheproblem of preprocessordirectives. Section4
summarizes our methodology and algorithm for analyzing
versioncontrol datain orderto estimatetheeffort expended
by developersto make changes. Section5 presentsthe re-
sults of applying this algorithm to the version control data
from a largesoftwaresystemin whichVE andothertext ed-
itorswereused.Section6 describesanalysesof VE’seffects
on interval andquality. Section7 considerspossiblewaysto
generalizethemethod. Section8 discussesrelatedwork and
Section9 concludesthepaper.

2 Background

The casestudy hererevolves around a commercially suc-
cessfulmulti-million linesoftwareproduct (alargetelephone
switchingsystem)developedover two decadesby morethan
5,000 developers. We first presentbackground materialon
theversioncontrol systemusedby theprojectandthende-
scribetheproject-specificversioningproblemsthatledto the
creationof theVE tool.

2.1 Version Control System and Data

Theextendedchangemanagementsystem(ECMS)[19], lay-
eredon top of thesourcecodecontrol system(SCCS)[26],
wasusedto managethesourcecodeof theproduct.

We presenta simplified description of the datacollected
by SCCSandECMSthatarerelevant to our study. ECMS,
likemostversioncontrol systems,operatesoverasetof files
containing thetext linesof sourcecode.An atomicchange,
or delta, to the program text consistsof the lines that were
deletedandthosethatwereaddedin order to makeachange.
Deltasareusuallycomputedby afile differencingalgorithm
(suchasUnix diff), invoked by SCCS,which comparesan
olderversionof a file with thecurrent version.

ECMS records the following attributesfor eachchange:
the file with which it is associated;the dateand time the
change was “checked in”; and the nameand login of the
developer who madeit. Additionally, the SCCSdatabase
recordseachdeltaasatupleincludingtheactualsourcecode
thatwaschanged(linesdeletedandlinesadded), login of the
developer, MR number (seebelow), andthedateandtimeof
change.

In orderto make a change to a softwaresystem,a devel-
opermayhaveto modify many files. ECMSgroupsdeltasto
the sourcecoderecorded by SCCS(over potentially many
files) into logical changesreferred to as Maintenance Re-
quests(MRs). There is onedeveloperperMR. An MR may
haveanEnglishabstractassociatedwith it thatthedeveloper
provides,describing the purposeof the change. The open
time of the MR is recorded in ECMS. We usethe time of

DRAFT
 : to appear in IEEETransactionsonSoftwareEngineering 3

thelastdeltaof anMR astheMR closetime. We performed
textual analysisof the MR abstractsto infer the purposeof
a change [20]. Upon takingout an MR, developerswrite a
shortdescription of the purposefor the change in English.
The termsusedin suchabstractsare classifiedas pertain-
ing to new feature development(NEW), corrective activity
(BUG), restructuring/cleanup (CLEANUP),or codeinspec-
tion (INSPECT).For example,an MR whoseabstractcon-
tainsthe term“uninitialized variable” is classifiedasBUG,
whereasan abstractcontaining the term “new feature” is
classifiedasNEW, andan abstractcontaining “remove old
code” is classifiedas CLEANUP. We classifiedeachMR
depending on which termsappearin their abstracts,per the
methodology in [20]. In theproject,5% of MRs weredone
to implement recommendations of codeinspectionmeetings
(INSPECT)(containing“codeinspection” in their abstract.)
Theclassificationwasvalidatedin follow-up developersur-
veys.

The INSPECTMRs wereseparatedfrom the otherthree
types because they differed substantiallyfrom other MRs
donein this project. First, they weredone according to de-
tailed prescriptions from codeinspectionmeetingsand in-
volvedlittle creativity on thepartof thedeveloper(codein-
spectionsMRs are“busywork”, in thewords of onedevel-
oper). Second, they hadalargenumber of deltas(weusethis
parameterto modeltheeffort in Section5),but they werenot
difficult to implement, sincethechangeswereprescribedby
a teamof developerspreparing for andparticipating in the
codeinspectionmeeting.Third, inspectionMRsincludedall
recommendations of thecodereview meetingrangingfrom
bugfixesto improving commentsandvariablenames.Thus,
INSPECTMRs area mixture of bug fixing andcleanupac-
tivity. Consequently, it wasessentialto separateINSPECT
MRs into adistinctclassto improve theeffort model for this
product. Otherproductsmight containfew or no INSPECT
MRs, thereby simplifying theclassification.

ThewaydevelopersworkonMRsmightvaryacrossorga-
nizations. We illustratethework patternsin theconsidered
organization. Figure1 shows MR intervals for two repre-
sentative developers. Eachhorizontal dashrepresentsone
MR. Thestartingandending positionsof thedashrepresent
the openandclosetime for the MR. The vertical axis rep-
resentscumulative countsof MRs for eachdeveloper. Fig-
ure1 shows two distinct stylesof work. Onedeveloperal-
waysclosesMRs quickly (curve to the bottomright). The
otherdeveloperoccasionally leavesMRs openup to several
months. Most MRs arecompleted within a week for both
developers,whichmeansthatthemonthly timesheetreports
of developersareof an appropriategranularity to track the
amount of timedevelopersspendonMRs.

2.2 The #version Problem

Thesoftwareproduct in our casestudyrequires theconcur-
rent development andmaintenanceof many sequential ver-
sionsaswell astwo mainvariants for domesticandinterna-

Months

M
R

 n
um

be
r

20 40 60 80 100

0
10

0
20

0
30

0
40

0
50

0

Figure1: MR intervalsfor two developers.

tionalconfigurationsof theproduct. Fromaversionmanage-
mentpoint of view, sourcecodemaybecommon to asmany
astwo dozendistinctreleasesof thecode.Someof thesere-
leasescorrespondto deployedproductsfor whichonlymain-
tenancechangesaremade, while others correspondto ver-
sionsunderactivedevelopment.

The softwarereleasesform a version hierarchy with two
main variantsand chronological releasesequences within
eachof these. Several constraints on the project manage-
mentare reflectedin the way sourcechangesare madeto
preserve this hierarchy. First, it is imperative that the new
development or maintenancechangesmadefor onesoftware
releasenot impact the previous releasein the sequenceor
any releasein theothermainvariant. Second, it is important
thatasmuchcommonality of code bepreservedaspossible:
changesmadein anearlierreleaseshouldautomaticallyap-
pearin the later releasesin that sequence. In the examples
that follow, the two mainvariant linesaredesignatedas‘A’
and‘B’, andthesequential releaseswithin eachmainline are
designatedby ascending numbers,e.g., 1A, 2A, 1B, 2B, and
so on. To achieve the secondobjective, mostof the source
files aresharedamongthereleases,with releasespecificdif-
ferencesdelineatedasdescribedin thefollowing paragraphs.

Theindustrial sourcecodemanagementtechnology of the
early1980’s did not have good support for branching. That
is, therewerenotoolsfor maintainingsourcethatwasmostly
common to many releasesbut containedsomereleasespe-
cific changes,andno tools for automaticallymerging sepa-
ratechangesto acommon codebase.Toaddressthemultiple
releaserequirementsof theprojectunderstudy, aspecialized
directive#versionwasusedto allow for releasespecificvari-
ationsin thecode,asshown in Figure2. The#version con-
structpermits a singlesourcefile to beextractedto produce
a differentversionfor eachsoftwarerelease.We canthink
of thisconstructasaC preprocessor#if directivewhereonly

DRAFT
 : to appear in IEEETransactionsonSoftwareEngineering 4

oneBooleanvariable is usedfor control, the variable may
benegated,andthevariablecomesfrom a restrictedsetthat
containsonevariablefor eachsoftwarerelease.Varioustools
areusedto verify the consistentuseof theseconstructsac-
cording to areleasehierarchymaintainedby thesystem.For
example, thetoolsguaranteethatachangecheckedin for 5A
will not affect thesourceextraction for 4A or earlieror any
of the ‘B’ releases.Tools arealsoprovided to perform the
extraction of thesourcecodefor building eachsoftwarere-
lease,again accordingto theversionhierarchy. For example,
extraction for release4A implies that the versionvariables
4A, 3A, 2A, and1A aretrueandall otherversion variables
arefalse.

Whena developer introducesnew codefor a release,the
new codemustbebracketedby a #versionconstructfor the
specificreleasefor whichthechange is targeted.Whenade-
veloperchangesexistingcodefor arelease,theexistingcode
mustbelogically removedwith a#versionusingthenegation
of thetargetrelease,andthechange introducedwith a #ver-
sionfor thetargetrelease.Figure2 showshow #version lines
areusedto change theexpressionin anif-then statementfor
Release5A. Theoriginal if-then statementwascodeinserted
for Release4A.

As theexampleshows,evenaoneline changeto thecode
requiresthedeveloper to addfive lines to thefile (four con-
trol linesandthechangedcodeline). Thedeveloperbrackets
the original line with the negated #version(!5A) control to
omit it for release5A. Thenthedevelopermakesa copy of
the line andbracketsit within #version controls for release
5A. Finally, thechangeis madeto thecopiedline. The#ver-
sionlinesalsomakethesourcefile moredifficult to readand
understand.Figure3 illustratesthe frequenciesof file sizes
andthefrequenciesof theproportionof #versionlinesto to-
tal lines in a file. Datafrom onesubsystemareshown. The
average proportion of #version lines to all lines is 14%and
thelargestproportionis 67%.

3 VE: A Version-sensitive Editor

To makeit easierfor developersto copewith #versiondirec-
tives,a version-sensitive editor (VE) wasmadeavailablein
theprojectunderconsideration [9, 24, 4].

3.1 The VE tool

VE allowsthedeveloperto edit in aview thatshowsonly the
codethatwill beextractedfor thereleasebeingchanged. The
tool alsoperforms theautomaticinsertionof any necessary
#version lines. For example, the insertionof a new line for
release5A in anareathatdoes nothaveany release5A code
will automatically producetherequired#version aroundthe
line. Likewise,achangeto a line will automaticallyproduce
the #version for the negation of 5A which will excludethe
existing line for 5A, andinsertthe changed line with #ver-
sionto includethechange for 5A (asin Figure2).

...
if (!PreCheckRoute(route))

return FAIL;
#version (4A)

dest = GetDest(route);
if (dest.port == 0) �

return(RouteLocal(route));
#endversion (4A)

DoRoute(route);
...

...
if (!PreCheckRoute(route))

return FAIL;
#version (4A)

dest = GetDest(route);
#version (!5A)

if (dest.port == 0) �
#endversion (!5A)
#version (5A)

if (dest.port == 0 ��� dest.module == 0) �
#endversion (5A)

return(RouteLocal(route));
#endversion (4A)

DoRoute(route);
...

Figure2: Beforeandafter a Release5A change. Embold-
enedlinesarethecodeaddedby theprogrammer.

Thedeveloper’s view is of normal editingin theextracted
code;VE managesthechangesto the#versionlinesaccord-
ing to the constraints describedin Section2.2. Figure 4
shows theview presentedby VE for thefile from Figure2.
In VE, the developeronly hasto usestandard editingcom-
mands to effect thechangeto the if-then statement,andVE
insertsthe required #versiondirectives(behind the scenes).
VE behaveslike eithervi or emacs, thetwo standardeditors
usedby mostof the developersin the project. In fact, the
appearanceto thedeveloperis thatof usingthestandardedi-
tor with theextendedbehavior of dealingwith #versionlines
automatically.

For thisstudy, anoteworthyaspectof VE is thatit leavesa
signatureonall of the#versioncontrol linesthatit generates.
This signatureconsistsof trailing white space(a combina-
tion of spaceandtabcharacters) thatuniquely distinguishes
thecontrol line from any control line generatedfor any other
change.� This was done to avoid unwanteddependencies�

In fact, the trailing spaces andtabsencodethecurrent deltanumberin
theunderlying SCCSfile. As aresult, even if developerscopy VE-generated
#version linesusinganordinary text editor, we candeterminethat this was
ahandchangewith highprobability (becausethedeltanumberof thesigna-

DRAFT
 : to appear in IEEETransactionsonSoftwareEngineering 5

0 1 2 3
�

4

0
2

0
0

4
0

0
C

o
u

n
ts

6
0

0

log10(LOC)
�

0.0 0.2 0.4 0.6

0
1

0
0

2
0

0
C

o
u

n
ts 3

0
0

#version lines/total number of lines

Figure3: Sizeof files andfraction of #version lines in one
subsystem.

if (!PreCheckRoute(route))
return FAIL;

dest = GetDest(route);
if (dest.port == 0 ��� dest.module == 0) �

return(RouteLocal(route));
DoRoute(route);

MR 12467 by dla,97/9/21,assigned [Local routing]
Versioning: 5A inside 4A
”route.c” [modified] line 67 of 241

Figure4: Release5A view in VE with change in bold

causedby SCCS’s useof the Unix diff utility. Sourcefiles
cancontainmany identical#versionlines,andthissimilarity
canin somecasescauseSCCSto storea change asif it af-
fected#version linesthatthedeveloperdid nottouch.VE es-
sentiallymimicsanobserved manual practicedone to avoid
this typeof dependency. However, VE producesthetrailing
whitespaceonevery#versionline it generateswith analgo-
rithm that uniquely identifiesthe lines asproducedby VE.
Sincetheuseof VE is optional in theproject, this “feature”
of VE allows usto distinguishwhenVE wasusedto makea
change involving #version lines from whenthechange was
madeusinganordinary editor.

Figure5 shows thehistoryof VE usagein theconsidered
project, whichconsistsof approximately600,000MRs. The
threelinesshow thepercentageof MRs thatweredonewith

turewill mostlikely disagreewith thecurrent deltanumberof theunderly-
ing SCCSfile).

H

H H

H H
H

H
H

H H H H H H H

N

N N

N
N N N N

N N N N N N N

V V V V V
V

V V V V
V V V V V

Years
�

F
ra

c
ti
o

n
 o

f
C

h
a

n
g

e
s

1984 1986 1988 1990 1992 1994 1996 1998

0
.0

0
.2

0
.4

0
.6

0
.8

H HAND
N NONE
V VE

Figure5: VE usageover time.

VE (V: MRs suchthatall deltasof theMR contained#ver-
sionlineswith theVE signature), withoutVE (H: MRs such
thatsomedeltaof theMR containeda #versionline without
theVE signature),andwithout #versionlines(N: MRs such
thatno deltain theMR containeda #version line). Theus-
ageof VE increaseddramaticallyover time. Approximately�����

of changesinvolving #versionlinesaredoneusingVE.
Around 45% of the changesdonein 1998 do not involve
#version lines and,consequently, we do not know for cer-
tain whetheror not theVE tool wasused.According to our
hypothesis,theuseof VE shouldnotaffect theeffort it takes
to completesuchchangesandthis hypothesiswastested(as
describedbelow).

Figure6 shows how developersusedVE over time. The
curves show for every year the fraction of developerswho
completed:� moreMRs entirelywith VE thanentirelyby handthat

year(����� �);� at leastoneMR entirelywith VE thatyear(�!�"�$#);� at leastoneMR entirelyby handthatyear(�%�$#);� completed at leastoneMR entirely with VE at some
point in thepast(“tried VE”).

Figure6 shows thatwhile 89%all of thedevelopershave
tried VE at somepoint in thepastby theendof year1999,
only 84% of them(74% of the total) have usedVE during
1999. 63%of developerscontinueperforming at leastsome
changesinvolving #versionlinesby handandabout 55%use
VE more frequently on suchchangesthan doing them by
hand. Thefigureanswersbasictool deploymentquestions:� How many developerstried theVE tool?� Of theonesthatuseVE dothey useVE morefrequently

thanchange codeby hand?

DRAFT
 : to appear in IEEETransactionsonSoftwareEngineering 6

Years
&

Fr
ac

tio
n

1986 1988 1990 1992 1994 1996 1998

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

VE>H
'

VE>H
'

VE>H
'

VE>0
'

VE>0
' VE>0

'
H>0

H>0

H>0

Tried VE
(

Tried VE
(Tried VE

(

Figure6: Fractionof developersusingVE over time.

� How many neverchange #versionlinesby hand?

The population that hasnot tried the tool (20%) needsto
know about tool’sexistenceandmayrequiretraining. People
whohavetriedit but don’ t useit any more(10%)andpeople
who make changes by handmorefrequently thanusingVE
(20%)shouldbesurveyedto find if thereareproblemswith
VE or if new featureshave to beadded.

3.2 Anecdotal Evidence of the Effectiveness of
VE

The statisticalstudy in the next sectionshows an increase
in productivity of developers when VE is used to make
changes, but cannot point to what aspectof the tool is re-
sponsiblefor this improvement. However, comments from
usersof the tool suggestthat theproductivity improvement
is dueto thereduction of effort that is required whenmanu-
ally coding#versionlinesto makechanges.

One developer reported having to make a conceptually
simplechange that wasnearly impossibleto make without
VE. The change required the renaming of a symbol in a
sourcefile. Sincethe file hadmany #version lines andthe
changehadto bemadefor oneversionwithoutaffecting any
of theothers,making thechangemeantmanually determin-
ing eachoccurrenceof thesymbol thatextractedfor thetar-
getversion. If the line wasalreadywithin thedesired#ver-
sionconstruct,thenthesymbol couldsimply bechanged.If
not, thentheexisting line would have to be“versionedout”
for thetarget version,anda copy of theline with thechange
“versionedin” (akin to thechange madein Figure2). Since
therewerenearlya hundredoccurrencesof thesymbol, ex-
aminingeachonetodetermineif it neededto bechanged and
thendetermining how it shouldbechanged would not only
be extremely time consuming, but also error prone. With
VE, thedevelopercouldsettheview to theextractedversion

andsimply give oneglobal substitutecommand to change
all the occurrencesof the symbol. VE guaranteedthat the
proper #versiondirectives wereinsertedautomatically, thus
reducing thetaskto a matterof minutes.

Otherdevelopersreported that the automatic handling of
#versionconstructspreventedthemfromproducingincorrect
or corrupted#versionconstructs,which oftenoccurredwith
manual editing andrequired significanttime to track down
andfix.

Usersalso reported that asidefrom the automaticinser-
tion of #version constructs, theability of VE to displaythe
extractedview in the editor madeit mucheasierto under-
standthecodein a file with complex #versioning andlocate
the lines that neededto be changed. ECMS providescom-
mands for performing extraction to be ableto seethe code
as the compiler seesit. However, in a heavily #versioned
file, theremaybemany similaror identicallinesthataretar-
getedfor separateversions,andlocatingwhich of the lines
arerelevant to theversionneeding to bechangedcanrequire
significanteffort.

Someexperienceddevelopersreported that having a tool
perform the #version work automatically resulted in far
fewerquestions from lessexperienceddevelopersabout how
to code#version linescorrectly. This suggeststhat the less
experienceddevelopersareableto bemuchmoreproductive
with VE. In addition,theconsultingwork loadontheexperi-
enceddevelopersis reduced,although thateffect is difficult
to measuredirectly.

4 Developer Effort Estimation

SinceVE leavesavisiblesignaturein theversionhistory, all
the necessarydataare in placefor measuring how helpful
VE canbeto developers.We hypothesizethatwhenmaking
changesinvolving #versionlines,developersaremoreeffec-
tivewhenusingVE thanwhenusingstandardtext editors.In
this sectionwe describe a general methodology, introduced
in [13], for measuring theinfluenceof variousfactorson the
effort required to make a change, usingthe change history
of a versioncontrol systemandperiodic time sheetdata. In
Section5,weapplythismethodologyto theproblemof mea-
suringtheeffect of theVE tool.

In principle, if measurementsof effort for eachchange
completedby developerswereavailable,we could fit a re-
gressionmodelsuchas

�*) effort +-,/. DEV 021 TYPE 0 Size3 024 TOOL (1)

in order to obtain estimatesof the effects on effort of the
following variables:� DEV: developeridentity;� TYPE: type of change, which rangesover the values

NEW, BUG, CLEANUP, INSPECT(seeSection2.1);

DRAFT
 : to appear in IEEETransactionsonSoftwareEngineering 7

Jan Feb Mar Apr Total
Effort for MR A ? ? ? ? ??
Effort for MR B 0 ? ? 0 ??
Effort for MR C 0 0 ? ? ??
reportedeffort 1.0 1.0 1.5 1.0

Table1: Dataavailable in effort estimationproblem, for a
singledeveloper.

� Size: sizeof change,which is thenumber of deltasin
anMR;� TOOL: useor non-useof VE, which ranges over the
valuesVE, HAND, NONE (NONE meansthe change
did notcontainany #version lines).

Previouswork [13, 14, 29] discusseswhichvariablesareim-
portant to include in the model. Thesizeof an MR canbe
measuredby the number of lines added,or by the number
of deltas. The number of deltasis usuallya betterpredic-
tor becauseit is lesslikely to containoutliers, assomeMRs
changed or introducedabnormally large numbers of lines.
Although thereare several typesof changes(TYPE), typ-
ically only the repair activity (BUG) exhibits significantly
different propertiesbecauserepairsmay require a lot of ef-
fort but, in theend,mayaffectonly oneline in onefile. Tool
usage(TOOL) hasthreepossiblevalues,aswe wantto con-
trastchangesdoneexclusivelyusingthetool (VE) tochanges
doneby hand(HAND) and to the control set of changes
whereno#versionlineswerepresent(NONE).

Unfortunately, versioncontrol systemsdonotrecord mea-
surementsof developereffort, soouralgorithm makesuseof
monthly time sheetdatainstead.This algorithm, asshown
in [14], is an example of the Expectation-Maximization
(EM) algorithm [11]. The EM algorithmis widely usedin
statisticsfor thepurposeof maximum likelihoodestimation
in the presenceof missingdata. Table 1 illustrates,for a
singledeveloper, theavailabledata.Rows in thetablecorre-
spondto changescompletedby thedeveloper, andcolumns
to months, sothateachcell in thetableis theamount of ef-
fort thedeveloperdevotedto a particularchange in a given
month. Monthly time sheetdatarecord thesumsof theen-
tries in eachcolumn: how muchtotal effort a developerex-
pendedin amonth. Wealsoknow whichchangesadeveloper
workedon duringeachmonth, anda developer’s total effort
needsto bedividedacrossthesechanges.

The row sums,if we knew them, would be effort mea-
surements for eachchange, andwe coulduseregressionto
relatethesemeasurements to quantitiessuchas the sizeof
the change or whether the tool wasused. The ideabehind
the algorithm is to begin with a guessat the change efforts
andalternatelyuseregressionmodelsandthetimesheetdata
to refineour initial guess.In theprocesswe will refineour
understandingof thefactorsthataffectchangeeffort through

Jan Feb Mar Apr Total
Effort for MR A 1.0 0.5 0.5 0.5 2.5
Effort for MR B 0 0.5 0.5 0 1.0
Effort for MR C 0 0 0.5 0.5 1.0
reportedeffort 1.0 1.0 1.5 1.0

Table2: Initialization of effort modeling algorithm: divide
developers’known monthly effort valuesevenly acrossMRs
openin thosemonths. At this point the algorithm fits a re-
gressionmodel for MR effort, using (2.5, 1.0, 1.0) as the
dependentvariable measurementsfor this developer.

Fitted
Jan Feb Mar Apr Total

Effort for MR A 0.8 0.4 0.4 0.4 2.0
Effort for MR B 0 0.4 0.4 0 0.8
Effort for MR C 0 0 0.8 0.8 1.6
reportedeffort 1.0 1.0 1.5 1.0

Table3: Rescalingdevelopers’ monthly MR efforts so that
the total efforts for eachMR equalthe prediction from the
fitted model, which herepredicted2.0,0.8, and1.6 months
of effort for thethreeMRs.

thechanging coefficientsin theregressionmodels. Define

�6587:9<;>=@?�ACB-A$DFEG?�AIHJA KLEG?�A M*AON E
where5P7:9<; is theamount of effort spentontheMR B in monthH by thedeveloper M . DFEQKLE and N arethetotal numbersof
MRs, months, anddevelopersrespectively. Further define587:9<;R)TSU+ to betheestimateof theunobservable 5V7W9<; at the SYX[Z
iterationof thealgorithm. It will beconvenientto allow S to
takehalf-integralvalues,to indicateestimatesatintermediate
pointsin aniterationof thealgorithm. Wewill alsouse“dot”
notationwith the 5 7:9<; ’s and 5 7:9<;)TSU+ ’s to indicatesumming
over anindex, e.g.

5]\ 9<; , ^_ 7�` � 5 7W9<;
aretheknown amountsof effort expendedby developer M in
monthH .

To constructan initial guess,we divide up eachknown
monthly effort equallyacrossall changesopenin thatmonth
(seeTable2):acb 5d7W9<;e� #fEg5d7W9<;R)h#i+g,"�W�jBlkP=i587�mc9<;��$# �:n � 5 \ 9<;
Thenrepeatthe following four stepsfor eachiteration Se,#fEo?�E<pfEGqoqGq until convergence:

1. Computerow sumsto obtainestimatesof total MR ef-

DRAFT
 : to appear in IEEETransactionsonSoftwareEngineering 8

Jan Feb Mar Apr Total
Effort for MR A 1.0 0.5 0.375 0.333 2.208
Effort for MR B 0 0.5 0.375 0 0.875
Effort for MR C 0 0 0.75 0.667 1.417
reportedeffort 1.0 1.0 1.5 1.0

Table4: Rescalingdevelopers’monthly MR effortssothatin
eachmonth the developer spentthe correctamount of total
effort. The next regressionmodel will use(2.208, 0.875,
1.417) asthedependentvariablefor this developer.

forts, for eachdeveloper(seeTable2):

5 7 \ ;)TSU+g,sr_9Q` � 5 7:9<;)TSU+tq
2. Fit a regressionmodelof imputedMR effort onthefac-

torsthatpredict MR effort. Weprefertousegeneralized
linearmodels[18] of theform of Equation (1), givenin
Section4. Denotetheresultingfittedvalues u5 7 \ ;)TSU+tq

3. For eachdeveloper M , rescalethe rows in the imputed
monthly MR effort tableso that thenew row sumsare
equalto theregression’s fitted values (seeTable3):

5d7W9<;R)[Swvx?zy{p�+V,|587:9<;R)TSU+}� r_ ~ ` � 5d7
~ ;�)TSU+ n � u587 \ ;�)TSU+}q

4. Foreachdeveloper M , rescalethecolumnsof thetableso
thatthecolumnsumsareequalto theobserved monthly
efforts (seeTable4):

5 7W9<;)[S�v�?6+V,/5 7W9<;)[S�v�?zy{pi+�� ^_� ` � 5 � 9<;)TS�v�?6y�p�+ n � 5w\ 9<; q
Convergenceof this algorithm meansthat the improvement
in the error measure in the model fitting stepis negligible.
Thealgorithm is anEM algorithm [14] andis thereforeguar-
anteedto converge(under unrestrictedconditions). Its con-
vergencefurther meansthat the improvement in the error
measurein the modelfitting stepis negligible after ten it-
erations.After convergence,wereport thecoefficientsin the
final regressionmodel.

Since the regressionmodel is necessaryfor improving
our estimatesof change effort, it is necessaryto make sure
that the model includesquantitieswhich are known to be
closely relatedto changeeffort. We have found that the
models should include coefficients which depend on thede-
veloper, sincevariations in developerproductivity areoften
quitelarge[5, 10]. Themodel should alsoincludeameasure
of thesizeof a change,suchasthenumberof lineschanged
or thenumber of deltasmakingup thechange. Whetherthe

change is abugfix, new featuredevelopment, cleanupeffort,
or inspectionrework, is alsoimportant.

We have foundthatbecausedevelopersalmostalwaysre-
port very nearly one unit of effort per month,onecan re-
placethesereported monthly effort datausingthe assump-
tion that eachdevelopercontributesoneunit of effort each
month, without changing theresultssubstantially.

An importantcomponentof theinferencemethodology is
assessinghow certainonecanbeabout thevaluesestimated
for the coefficients in the final regressionmodel. As dis-
cussedin [13], we usethe “jackknife” method, which con-
sistsof removing onedeveloper from the list we used,run-
ning thealgorithmagain, repeating oncefor eachdeveloper,
andobserving how muchthecoefficients changedepending
on which developeris omitted. The jackknife produceses-
timatesof thestandarderrorof eachof theregressioncoef-
ficients. This standarderror can thenbe usedto construct
confidenceintervals for regressioncoefficients and, in par-
ticular, to testhypothesessuchas“the tool hasno effect on
change effort” andto attachmeasuresof statisticalsignifi-
canceto thesehypotheses.While statementsaboutstatistical
significancederived from observationaldatashouldbeinter-
pretedwith somecare,we believe thatin this studywe have
controlled for potentialsourcesof confounding sufficiently
well thatcalculated� -valuesareusefulmeasuresof variable
importance.

5 Effectiveness of the Version-Editor
Tool

Thissectioninvestigateswhetheror not theVE tool reduced
theeffort neededto make changesinvolving #version lines.
Ouranalysisproceedsin threesteps:

1. TageachdeltaandMR with VE signature information;

2. Selectabalancedsetof developers;

3. Estimatetheeffect of theVE tool usingtheeffort esti-
mationalgorithmof theprevioussection.

At the endof the sectionwe summarize measurestaken to
ensurethevalidity of theresults.

5.1 Extraction of VE signature for each delta

As describedin Section3, VE leavesa signaturein SCCS
files because of the trailing white spaceit insertsafter the
#version lines. We wrote a programthat processedall 27
gigabytes of SCCSrecords for the software project under
considerationandidentifiedthreeattributesfor eachdelta:

1. numberof #versionlines;

2. numberof #versionlineswith VE signature;

3. numberof #versionlineswithoutVE signature.

DRAFT
 : to appear in IEEETransactionsonSoftwareEngineering 9

This information wasusedto identify the deltaswherethe
usageof VE wasnot likely to have impact(i.e., thosedeltas
thatcontainno #versionlines),andwheretheusageshould
haveanimpact(presenceof #versionlines).

As definedin Section2, anMR typically consistsof sev-
eraldeltas.It is possiblethatsomeof thedeltasin oneMR
haveaVE signatureandothersdonot. Thisdoesnothappen
frequently: only 1.8% of the MRs hadthis property in the
entiredatasetof 600,000 MRs andin the analyzedsample
of 3,400MRs (we selectedthis sampleof MRs by choos-
ing a subsetof developersasdescribedbelow). We marked
suchchangesfor analysispurposesasmadeby hand, since
according to ournull hypothesis(VE doesnot reducedevel-
opereffort for changesinvolving #versionlines)suchmark-
ing shouldnothaveany impact.If, however, VE reducesde-
veloper effort, thensuchmarking would only make it more
difficult for theVE effect to show up asstatisticallysignifi-
cant.

5.2 Developer selection

Thevariability in project size,developercapabilityandex-
periencearethelargestsources of variability in softwarede-
velopment(see,for example, [5, 10]). The effectsof tools
andprocessareoftensmallerby anorder of magnitude. To
obtainthesharpestresultson theeffectof agiventool in the
presenceof developervariability, it is important to have ob-
servations of the samedeveloper changing files both using
thetool andperformingthework without theaid of thetool.

We focusedondeveloperswhomadesubstantialnumbers
of changesrequiring modifications of #version lines, both
with andwithout the VE tool. Also it is preferableto con-
sider developersthat had similar work profiles (i.e., made
similar numbersof changes).Giventheconsiderablesizeof
theversion historydataavailable,bothtaskswereeasy:we
selecteddeveloperswho madebetween300 and500 MRs
in thesix yearperiodbetween1990and1995 andhadsim-
ilar numbers(morethan40) of MRs done with andwithout
VE. This resultedin a sampleof 9 developers. Reducing
thenumberof developersincreasesthestandard errorof the
estimatedcoefficientswithoutsubstantiallychanging thees-
timates.

5.3 Effort drivers

We fitted two models basedon Equation 1 (seeSection4),
estimatedstandarderrors using the jackknife method, and
obtained thefollowing results,assummarizedin Table5. In
thefirst modelwe included MR measuresthatour previous
experienceindicatedmight affect theeffort. We fit thesec-
ond model usingonly a minimal set of predictors that we
found significantin thefull model.Theexactregressionfor-
mulasfor eachmodel were:�*)[�t�P���Q��+�, �!�f�G���<�i�R� 0 #linesadded�i� 01@�f��� 0�1d�f�{���P�P�P��021@���� t���f�@¡¢0

£R¤ �P�d¥O0 £ ��¦��P��0�§ 7 ¨ ¥�©lª�©Y« ¬Q6©Y®�¯�*)T�G�d�i�U�}+�, 1 �f��� 0 £ ¤ �d�P¥ 0 £ ��¦��P� 0 § 7 ¨ ¥�©lª�©Y« ¬Q6©Y® ¯
In these formulas, we use 1 �f��� as a shorthand for�t°�±>)[²d) BUG+R����³ 1 �f��� + , where ²d) BUG + is 1 if the MR is
a defect fix and0 otherwise.

Thepenalty for failing to useVE in thepresenceof #ver-
sion lines is the coefficient £8´¶µ r¶· , which indicatesan in-
creaseof about 40%to50%in theeffort requiredtocomplete
an MR. (This coefficient wasstatisticallysignificantat the
5%level). Restated,if adeveloperperformsthreechangesto
codeinvolving#versionlinesin agivenamount of timewith-
out VE, thesamedeveloperusingVE couldperform, on the
average, four changesof thesamesizeandtypeto thesame
code.At thesametime, changesperformedusingVE were
of the samedifficulty (requiring a statisticallyinsignificant
(?¹¸ £ r»ºwr»¼ ½ p ���) increasein effort) aschangeswith no
#version linesat all. Thereis a large uncertainty in theesti-
matedcoefficients: the95%confidenceinterval for £¾´¶µ r»·is ¿�?�q #f?�E�p�q�?tÀ for thefull model (effort savingsrangebetween
oneand110%)and ¿�?�q #{Á@E�p�qWp6À for theminimalmodel(effort
savingsrangebetweenfour and120%).

To geta rough estimateof thetotal costsavingsfrom the
usageof the tool we selectedMRs involving VE #version
lines for eachyear VE was used(seeFigure5). We then
selectedthedeveloperswho workedon theseMRs and, for
eachdeveloper, calculatedthe ratio of VE MRs to the total
numberof MRs they completedthatyearto approximatethe
effort required for VE MRs. To obtain therough estimateof
effort savingswemultiplied theestimateof thetotalVE MR
effort by 40%to obtainyearly savingsovertheyearsstarting
from 1991. Theestimateof thetotal effort savingsfrom VE
over its entirelifetime is 1400PersonYears(PY) while the
totaleffort to createandmaintainthetool over thesametime
periodwasbelow 10PY.

We were successfulin selectingsimilar developers: the
ratio betweenthelargestandsmallestdevelopercoefficients
was1.65for thefull modeland1.68for theminimal model,
which would meanthat the leastefficient developer would
require 68%additional effort to makea changecomparedto
themostefficientdeveloper, but thejackknife standarderrors
indicatedthata differenceof this sizewasnot largeenough
to be distinguishable from random fluctuations (i.e. there
wasno statisticallysignificantevidence that the developers
differed). This fact indicates thatwe weresuccessfulin se-
lecting“similar” developersfor oursample.

Thetypeof a change wasasignificantpredictorof theef-
fort requiredto makeit, asbugfixeswere50%moredifficult
thancomparably sizedadditions of new functionality. Im-
proving the structureof the code,the third primary reason
for change(see,for example, [32]) wasof comparablediffi-
culty to addingnew code,aswasa fourth classof changes,
implementing codeinspection suggestions.

Thecoefficients . � and . � werenotsignificantlydifferent

DRAFT
 : to appear in IEEETransactionsonSoftwareEngineering 10

Model Coefficient Estimate p-val 95%CI. � 0.15 0.4 ¿c¸�qWp�E<#fq � À. � -0.08 0.3 ¿�¸�qWp�EQ#@q�?GÀ18�f��� 1.44 0.01 ¿�?�q�?�Eo?�q ÂzÀ
Full 1d�f�{���P�P�P� 0.6 0.4 ¿ #fqWp�E�p6À1@���� t���f�@¡@�Ã¦�� 0.7 0.8 ¿�q #f?�E}ÄRq ÅzÀ£�¤ �P�P¥ 1.46 0.04 ¿�?�q #f?iE<p�q�?tÀ£ ��¦��P� 0.7 0.3 ¿ #fq Á@Eo?�q ÆzÀ1 �f��� 1.5 0.00 ¿c?iq pfE<pzÀ
Minimal £ ¤ �P�P¥ 1.5 0.03 ¿c?iq #�Á@E�p�qWp6À£ ��¦��P� 0.8 0.3 ¿ #fq Á@Eo?�q Á{À

Table5: Resultsfrom model fitting. CI = confidenceinterval

from zeroin thefull model,sothesizemeasureswereomit-
tedfrom theminimalmodel.Thatis, thesizeof a changeas
measuredby thenumberof linesadded andnumberof deltas
did nothaveaparticularly strongeffect ontheeffort required
to make it, given thedeveloperandthe typeof change. We
believethattheother variables in themodel, primarily devel-
operandthepurposeof thechange,weretheprimary factors
determining the effort spent. While we believe that size is
alsoanimportantvariable, it is determined(to ahighdegree)
by theformer two factors.Furthermore,smallchangessuch
asMRs aremuchmore uniform in sizethanlarge changes
like releasesor features, so the role of size in determining
effort for MRs maybenot asimportantasin caseof larger
changes.

5.4 Validity of the results

To ensure that theestimatedeffectswerevalid, a number of
stepsweretaken.

First,we tooka conservativeapproach(under thenull hy-
pothesis) to markall changesthatcontaineda deltawith the
VE signatureanda deltawithout the VE signature asdone
by hand.

Second, weselectedabalancedsetof developerswith sim-
ilar change profiles to reduce inherent variability in devel-
operperformance.This wasachievedby choosingdevelop-
erswho wereactively changing the code in the considered
six yearperiod (1990to 1995) andmakingsimilar numbers
of changes(300to 500)in thatperiod.

Third, we madesurethe tool effect would beidentifiable
from thesamplegiven otherkey factorsaffecting thechange
effort - size,type,anddeveloper. In linearregression,this is
referred to aschecking for collinearity. Ignoring suchrela-
tionshipscould leadto situationswherethetool effect would
be indistinguishablefrom otherfactorsaffecting changeef-
fort.

We first checkedfor interactions betweendevelopersand
VE usage. Suchinteractions occur frequently (developers
tendeitherto useVE or not to useVE). Fromthesetof de-

Coefficient Estimate p-val 95%CI£ ¤ �P�P¥ 1.5 .04 ¿c?iq #@?�E�p�qWp6À£ ��¦��P� 0.8 0.37 ¿ #fq � Eo?�q Á{À
Table6: Resultsfor a model with notypefactor.

velopersselectedin thesecondstepwechoseonly thosethat
hadsimilar numbers of changes with andwithout VE and
performedat least40 changes undereachcondition. This
broughtusto thefinal sampleof 9 developersweusedin the
analysis.

The relationshipbetweenthe tool usageand the size of
a changewas insignificant. However, the interaction with
the type of change wasstrong. New codewasmorelikely
to bedone without VE, while bug fixesweremore likely to
bedonewith VE. This interactionconfounds the tool effect
with a factorknown to influencethe difficulty of a change.
However, this interaction makesit moredifficult to find sig-
nificantpositive effectsof VE, sincebug fixesrequire more
effort andaremoreoftendone usingVE.

To verify that the interaction is not affecting the results,
we fitted the modelwith no factor for the type of change.
The resultsare in Table 6. The estimatedVE coefficient
did not change from the original model in Table5, but the
variance of theestimateincreased(indicated by wider con-
fidenceinterval) becauseof theadditional variability caused
by notadjustingfor thechangetypefactor.

Fourth, we validated the models using the jackknife
method. Wecomparedtheeffectof VE for changesthathave
similar values of theprimarycostdrivers (developer, sizeof
change, type of change). Thesedrivers were found to af-
fect theeffort significantlyin [13]. Usingthe jackknife, we
measuredthesignificanceof theeffectsgivenby themodel.
More detailson validation, the model fitting and the algo-
rithm arein [13].

Despiteall thesechecks,theresultswarrant somecaution.
Although the selecteddevelopersperformed similar num-
bersof changes with andwithout VE, the patternwas not
independentof time. Eight out of ninedevelopersgradually
movedtowardsexclusiveusageof VE, while oneabandoned
usageof thetool over theconsideredperiod.Becauseof this
imbalance,thetool usagefactoris confoundedwith timeand
otherfactorssuchasnaturaldecayof thesoftwarearchitec-
ture. Becauseof thenatureof theobservationalstudy, other
confounding factors might bepresent despiteall theprecau-
tionstaken.

6 Development Interval and Change
Quality

In addition to investigatingthe impactof VE on the effort
expendedfor singleMRs, we investigatedtheimpactof VE

DRAFT
 : to appear in IEEETransactionsonSoftwareEngineering 11

Years
&

D
ay

s

1992 1994 1996 1998

0
10

0
20

0
30

0
40

0
50

0
60

0

All features (with #version lines)
Ç
VE features
'
Non VE features

Figure7: MR-derived featureinterval smoothedover time.

on feature interval andon thequalityof thechanges.

6.1 Impact of VE on Feature Interval

While MR interval is an important partof anoverall devel-
opment interval, it is not obvious how to combine individ-
ual MR intervals to obtainthe total interval for a customer
delivery. Consequently, we decided to directly measurethe
interval for thesoftwarefeatures(or work itemsasthey are
calledin theconsidered project). Thesoftwarefeaturesare
delivered to customersandbring revenue, therefore thereis
anessentialbusinessneedto reduce the time it takesto de-
velopa feature.

Eachfeaturein the project was relatedto a set of MRs
anddeltas.We calculatedtheinterval of eachfeature asthe
timebetweenthefirst andthelastdeltaproducedfor thatfea-
ture. Suchcalculationdoesnot constitutetheentirefeature
interval (which includeswork on requirements,designand
testing). To calibrate the MR-derived interval we obtained
the information on full featureinterval for 63 regular fea-
turesfrom two recentreleasesof the product. The interval
was measuredbetweenthe processstepsof “detailedesti-
mationcompleted”and“begin managed introduction” of the
corresponding release.Themeanof thefull interval was570
days.Themedianratio of MR-derived interval to full inter-
val wasapproximately #@q Å indicating thatmorethanhalf of
full feature interval is capturedby theMR-derived interval.
Thesefindingsaresimilar to independentestimatesmadeby
a product teamtasked with reducing interval in the feature
releases.

GiventhatVE reduceseffort for individualMRs, it is nat-
ural to expect that it would reduce MR interval and,possi-
bly, featureinterval. To test this hypothesiswe compared
the MR-derived featureinterval for featureswhereVE was

Variable Estimate Std.Error p-value
Intercept (1 �) 2.94 0.06 È$#fq #f?����³¶ÉÊBYËiÌ (1 �) 0.58 0.01 È$#fq #f?

VE (1 �) -0.46 0.06 È$#fq #f?
Table7: Featureinterval regression.

exclusively usedfor changes involving #version lines ver-
susthe rest of the features involving #version lines. First
weexcludedfeaturesthatwerestartedafterDecember1998,
becausethesefeaturesmight not becompletedyet. We also
excludedfeaturesthatdidnotmodify#versionlinesandvery
old featuresstartedbefore 1992, becauseVE wasnot exten-
sively usedthen,and featureintervals tendedto be longer
(seeFigure7), therebypotentially increasingtheVE effect.
The436featureswhereVE wasexclusively usedhada me-
dianMR-derivedinterval of 149daysandthe2779otherfea-
tureshada medianMR-derived interval of 442 days. This
comparisonis slightly biasedbecause the non-exclusively-
VE featurestendedto belarger, their sizeaccounting for the
partof thelongerinterval. Largerandmorecomplex features
aredoneby largerteamsandaremuchlesslikely to haveall
participantsbeexclusiveVE users.

To perform a more precisecomparison we fitted a re-
gressionmodelincluding featuresizein termsof numberof
deltas.Theregressionequation:����³ Interval , 1 � v 1 � ����³ Size v 1 � VE v errorE
whereInterval is measured in days,Sizein number of delta
andVE is anindicatorof whetherVE wasusedexclusively
for changesinvolving #version lines. The sizeandinterval
weretransformedto maketheirdistributioncloserto aGaus-
siandistribution. A computed Í value of #fq Åip indicatesa
goodmodel fit andtheANOVA tablegivenin Table7 shows
a highly significantimpactof the VE tool. For example, a
predicted interval for a mediansizedfeature of 137 deltas
would take176dayswith VE and279dayswithoutVE. Us-
ing our estimatesof the full featureinterval we would get
approximatelya)hpiÄ{Î>¸x?zÄzÅi+<yR?zÄzÅÐÏ¹#@q Å2,ÑÆ �i� increasein
full featureinterval for featuresthatdid not exclusively use
VE. It is worthnoting, thatthisnumberis verysimilar to the
estimateof thedecreasein individual MR effort.

6.2 Impact of VE on MR Quality

DevelopersusingVE haveasimplerview of thesourcecode
without theplethoraof #versiondirectives.This leadsto the
hypothesisthatVE mayreducethelikelihoodthatasoftware
change would fail afterbeingdeliveredto thecustomer.

The project understudyhaskept the information on all
MRs that weredeliveredto customers as patches or “soft-
ware updates”. In eachcasewhen a patchfailed, a root
causeanalysiswasdoneandthe MRs that causedthe fail-
urewereidentifiedandrecorded (for moredetail see[21]).

DRAFT
 : to appear in IEEETransactionsonSoftwareEngineering 12

To evaluatetheeffect of VE on softwareupdatefailures,we
calculatedthefractionof MRscontaining #versiondirectives
thatfailedwhendelivered in softwareupdates,MRsdoneen-
tirely usingVE (?iq Á �i�) andthesamefractionfor MRsdone
not entirelywith VE (p�q Î{Á �). Thedifferenceindicatesthat
VE might reducetheprobability thatanMR would causea
failurein a softwareupdate.

We thenapplieda morerigorousfailureprobability mod-
eling,asdescribedin [21], but thenon-usageof VE wasnot
a significantpredictor that an MR would causea software
update to fail. However, VE might affect thatprobability in-
directly becausethe featureswith exclusive useof VE tend
to besmaller(have fewer deltas,addfewer lines,andtouch
fewer subsystems)and the size of an MR is an important
predictor of its failure probability (with larger MRs having
higher probability to fail).

7 Software Tool Evaluation Scenarios

In this section,we considerhow to generalizethe process
usedin our casestudyto othersoftwaredevelopment envi-
ronmentsandsoftwaretools.

In our casestudy, the effort analysis(Sections4 and5)
madeuseof generic changedatathatarepresentin any mod-
ernversioncontrol system(asdescribedin Section2). Thus,
the repeatabilityof our experiment in other settingsrelies
primarily on the ability to correlatetool usagewith change
history. Theparticularsof theVE tool providedaverydirect
link betweentool usageandchanges,for two reasons:� VE is aneditorandis useddirectly to changesoftware;� VE leavesa tracebecauseof thetrailing white spaceit

insertsat theendof #versionlines.

Usageof many othersoftwaretoolscanbetracked.Some
toolsmodify only acertaintypeof sourcecodefiles. Theus-
ageof anumberof toolsis monitoredfor licensecompliance
purpose(recordingof whoandwhenusedthetool). Finally,
it is oftenrelatively easyto instrument thetools to log their
usage.

Many softwaretools,suchasdebuggers,sourcecodeana-
lyzers,profilers,etc.,areusedto examine andanalyzesoft-
waresourcebut not to modify it and, consequently, do not
leave tracesin the sourcecode. This is not terribly prob-
lematic,sincesoftwaretools canbe instrumented to record
whenthey areappliedto a softwareentity. To establishre-
lationshipsbetweentool usageanda changewe must rely
on temporal locality asa substitutefor causality. Thatis, we
mustassumethata changemadeto softwareentity Ì at timeS bydeveloper M is (partially) aidedbysoftwaretoolsthatde-
veloper M appliedto Ì (or entitiesrelatedto Ì) in somewin-
dow of timebefore S . Thisassumptionis quitereasonablefor
many softwaretools suchaserror detectors anddebuggers,
though it may not apply as well to general program com-
prehensiontoolswhich couldbeusedfar before a change is
made.

This leadsusto thefollowing process:

1. Via automated non-intrusive monitoring, record the
toolsa developerusesin thecourseof softwaredevel-
opment andthesoftwareentitiesto whichthey wereap-
plied.

2. Correlatethe monitoring informationrecorded in step
1 to the modifications to software entities that are
recorded by the versioncontrol system,using tempo-
ral locality to link theapplication of a softwaretool to
entity Ì (andrelatedentities)to modificationsto Ì .

3. Use the effort analysisalgorithm of Section4 on the
datafrom steps1 and2 to estimatehow theuseof the
toolaffecteddevelopereffort, codequality, interval,etc.

As describedin Section5, it is important to controlcon-
foundingvariablessuchasdeveloperexperienceandtypeof
change in the above process. In other environments, addi-
tionalvariablesmaycomeinto play.

Thisapproachcouldbeusedto evaluatenew toolsaswell
asexisting tools. To assessthe impactof a new tool (or an
enhancementof an existing tool) the usagedatashouldbe
collectedfrom a setof developerswho usethe tool before
thelargescaledeployment.Whentheeffectsof thetool us-
agebecome apparentthe tool mayberecommendedfor the
wide-scaledeployment. Theeffectsshouldbeestimatedby
comparing the changes doneby the developersbefore and
aftertheintroductionof a tool.

The approach shouldwork well for organizationswhere
developerswork on a singleproject at a time until comple-
tion. In someorganizations the codechangesarerecorded
in the version control systemonly at the time of comple-
tion. In suchcasesthe startof an MR shouldbe recorded
as the dateof completion of the previous MR doneby the
samedeveloper. In organizationswheredeveloperswork on
multipleprojectssimultaneously theapproachmight require
moresubstantialmodifications.

The most important assumptionis that the effort a de-
veloper spendsduring a calendarmonth(or more precisely,
the cost of developer to an organizationduring a calendar
month) doesnot systematicallydependon theMR predictor
variablesusedin themodel. For example, if we includethe
typeof change in themodel,it is importantthatthetotal ef-
fort spentduring monthswhenadeveloperonly fixesdefects
would not be systematicallydifferent from the total effort
spentduring monthswhena developeris implementing new
features. If this is thecase,it is important to collectreliable
monthly effort data. Otherwise,theassumption of constant
effort permonth is sufficient.

In caseswherenew projectsor inexperienceddevelopers
areinvolved,it is important to includecalendartimeasapre-
dictor in themodelto account for developerlearningeffects.
Including calendartimeasapredictor is alsoadvisablewhen
therearesignificantchangesin theprojectduring thestudy
period.

DRAFT
 : to appear in IEEETransactionsonSoftwareEngineering 13

In somecasesthetoolsaffect thenature of thechangesto
thesourcecode(for example,whenvisualenvironmentsare
usedto generatethecode). Themethodproposedherewas
extended to suchmoregeneral useof softwaretechnology,
in particularto assessthe impactof the useof application-
engineeringenvironmentsin [30, 3].

8 Related Work

Thereis asubstantialamount of work onevaluating software
tools,which falls into threebroadcategories: controlled ex-
periments on software tool use, software tool assessment,
andcasestudiesof softwaretool use.Wealsoreview related
work oneffort estimationin softwareprojects.

8.1 Controlled Experiments on Software Tool
Use

Controlledexperimentson softwaretools typically usetwo
groups to evaluatea tool on a given task: a study group
that usesthe tool anda control group that doesnot usethe
tool. Suchexperimentshave beendoneon program slicing
tools[17], algorithm animation tools[16], andstructureded-
itors [23], to namebut a few. Thestudyof Ormerod [23] is
interestingbecauseof thedetailedlevel of tool instrumenta-
tion: a log of all keystrokesenteredinto a structurededitor
for Prologwasrecordedandusedto identifyedits,edittimes,
anderrorsmade.Thereis ahugebody of work in theHuman
Computer Interaction community thatdealswith therelated
issueof user interface designand evaluation. Many such
studiesevaluatehow differentuserinterfacesaffect taskper-
formance[12, 28]. Of course,our studyis not a controlled
experiment,although we did control for developervariabil-
ity (seeSection5). We have analyzedhistoricalprojectdata
(timesheetdata,andversioncontrol data),while controlling
for confounding variables.

8.2 Software Tool Assessment

Softwaretool assessmentis an industry of substantialsize.
As summarized by PostonandSexton[25], thesoftwaretool
assessmentprocessconsistsof thefollowing basicsteps:

1. identifying andquantifying userneeds;

2. establishingtool-selectioncriteria;

3. findingavailabletools;

4. selectingtoolsandestimatingthereturn on investment;

5. acquiring atool andcustomizingit to betterfit theenvi-
ronment;

6. monitoring of tool usageto determine the impactof a
tool.

Many tool assessmentprocessesand standards (suchas
IEEE Standard1175) focus on the useof forms to gather
datato guidethefirst fivestepsof theaboveprocess[22, 25].
Theseinclude forms for needsanalysis,tool-selectioncri-
teria, tool classification,and tool-to-organizationand tool-
to-tool relationships. Our work complements such work
by addressingthe final point (6) above. We usea highly-
automatedtechniquecombining tool usageinformationwith
change effort analysisto estimatetheimpactof a tool in an
organization.

BrownandWallnau[7] presentaframework for evaluating
softwaretechnology. They observe that“technologyevalua-
tionsaregenerally ad-hoc, heavily relianton theevaluation
staff ’sskills andintuition”. Their framework is basedon the
ideaof “technology deltas”,by whichthey meantwo things:
how onetool differs from another, andhow the differences
betweentoolsaddressspecificneeds. In our casestudy, the
“delta” betweenVE anda standardtext editor is theability
to manage#version directivesfor thedeveloper.

8.3 Case Studies

Kitchenham,PickardandPfleegerpresent a framework and
guidelinesfor performing casestudiesof softwaretoolsand
methods [15]. They observe that a casestudymay be pre-
ferredover a formal experimentif the effect of a new tool
cannot be identified immediately, which was certainly the
casewith theVE tool. Ourcasestudymadeuseof historical
datato identify the impactof the VE tool over many years
of use.Exactlyhow long oneneedsto collectdatain order
to make suchanassessmentis anopenquestion. If the tool
effectis verystrong, evenafew monthsmaysufficeto obtain
a statisticallysignificant result,aswasshown in [29].

Bruckhaus et al [8] present a case study of how
requirements-management toolsaffectedtheproductivity of
requirementsplanners, acrossseveral projects. Their goal
wasto find which projectswould benefit from new tools. In
this study, they measuredproductivity (afterthefact)by the
ratio of thenumber of featuresin a projectto total effort ex-
pended in theproject(numberof minutes). They examined
how thepresence/absenceof atool, projectsizeandsoftware
process(simpleor complex) affect productivity. Measuring
at this macrolevel makesit difficult to separatethe impact
of thetool from otherconfounding variables (suchasexpe-
rience,andsizeof thefeature). Projectandprocesscouldbe
included asfactors in ourmodel.

8.4 Effort Estimation

Previous work on developing modelsof effort (of which a
recentexample is [27]) hasdwelt on predicting the effort
that will be requiredto completea nascentproject. The
COCOMO model [6] and function points [1] are frequent
contributors to thesepredictions. Our problem is substan-
tially differentasit workswith smallerchanges(MRsasop-
posedto projects). Also, we derive estimatesof the effort

DRAFT
 : to appear in IEEETransactionsonSoftwareEngineering 14

thatwasrequiredfor changesthatwerepartof alreadycom-
pletedprojectsinsteadof concentratingonprediction.

Thework in thispaperusestheeffort estimationalgorithm
introducedby Graves andMockus [13], which relateseffort
estimatesto thesizeof anMR sizeandthe typeof change.
They latervalidatedthealgorithmtheoretically andvia sim-
ulations[14]. An earlierversionof this paper[2] introduced
how to usetheeffort estimationalgorithm to evaluatetheef-
fectof tool in adevelopmentenvironment.Thecurrent paper
builds on this previous work by providing a morethorough
experimentalevaluation anda moredetailedexplanationof
ourusageof theeffort estimationalgorithm. In addition, we
performednew experimentsto evaluatetheeffect of VE on
interval andquality.

9 Conclusions

We have conducteda detailedanalysisof the usageof Bell
Labs’VersionEditor(VE) tool basedonanew effort estima-
tion algorithm that usesversioncontrol dataandtimesheet
data. Our analysisfound that the VE tool, asusedin Bell
Labs,hasasignificantimpactondeveloperproductivity. The
useof versioncontrol data,which is generally availablein
any softwaredevelopment environment, andthepresenceof
a tool “witness” in this dataallowedfor a fine-grainedanal-
ysis of tool usagespreadover a number of tool users.The
methodology presented herecanbe (andhasbeen) applied
to othersettings,but caremustbe taken to control for con-
foundingvariables,whichcanvarywith thesetting.

Acknowledgments

This researchwasperformedwhenDr. Graveswaswith the
National Institute of StatisticalSciencesand Bell Labora-
toriesandDr. Ball waswith Bell Laboratories. We thank
all reviewersfor their insightful suggestions. This research
was supported in part by grants SBR-9529926 and DMS-
9208758to theNationalInstituteof StatisticalSciences.

References

[1] A. J. Albrecht andJ. R. Gaffney. Software function,
sourcelinesof code, anddevelopmenteffort prediction:
asoftwaresciencevalidation. IEEETrans.onSoftware
Engineering, 9(6):638–648,1983.

[2] D. Atkins, T. Ball, T. Graves, and A. Mockus. Us-
ing versioncontrol datato evaluate the effectiveness
of software tools. In 1999 International Conference
on Software Engineering, pages 324–333. ACM Press,
1999.

[3] D. Atkins, A. Mockus,andH. Siy. Measuringtechnol-
ogyeffects onsoftwarechangecost.Bell LabsTechni-
cal Journal, 5(2):7–18, April–June2000.

[4] D. L. Atkins. Versionsensitive editing: Changehis-
tory as a programming tool. In Proceedings of the
8th Conferenceon Software Configuration Manage-
ment(SCM-8), pages146–157.Springer-Verlag, LNCS
1439, 1998.

[5] V. Basili and R. Reiter. An investigationof human
factors in software development. IEEE Computer,
12(12):21–38,December1979.

[6] B. Boehm.SoftwareEngineeringEconomics. Prentice-
Hall, 1981.

[7] A. Brown andK. Wallnau. A framework for evaluat-
ing softwaretechnology. IEEESoftware, pages 39–49,
September 1996.

[8] T. Bruckhaus,N. Madhavji, I. Janssen,andJ.Henshaw.
The impact of tools on software productivity. IEEE
Software, pages29–38, September1996.

[9] J. O. Coplien,D. L. DeBruler, andM. B. Thompson.
The deltasystem: A nontraditionalapproach to soft-
wareversionmanagement. In International Switching
Symposium, March1987.

[10] B. Curtis. Substantiating programmervariability . In
Proceedingsof theIEEE69, July1981.

[11] A. P. Dempster, N. Laird, and D. B. Rubin. Maxi-
mumlikelihood from incompletedatavia theemalgo-
rithm. Journal of theRoyalStatisticalSocietyB, 39:1–
38,1977.

[12] H. Gottfried andM. Burnett. Programmingcomplex
objectsin spreadsheets:An empirical study compar-
ing textual formula entrywith directmanipulationand
gestures.In Proceedings of the Seventh Workshopon
Empirical Studiesof Programming. Ablex Publishing
Co.,1997.

DRAFT
 : to appear in IEEETransactionsonSoftwareEngineering 15

[13] T. L. Graves and A. Mockus. Inferring change ef-
fort from configurationmanagementdata. In Metrics
98: Fifth International Symposiumon Software Met-
rics, pages267–273, Bethesda,Maryland, November
1998.

[14] T. L. Gravesand A. Mockus. Identifying productiv-
ity drivers by modeling work units usingpartial data.
Technometrics, 43(2):168–179,May 2001.

[15] B. Kitchenham, L. Pickard, andS. L. Pfleeger. Case
studiesfor methodandtool evaluation. IEEESoftware,
pages52–62,July1995.

[16] A. Lawrence, A. Badre,and J. Stasko. Empirically
evaluating the useof animationsto teachalgorithms.
In Proceedings of the1994IEEESymposiumonVisual
Languages, pages48–54,October1994.

[17] J. Lyle andM. Weiser. Experimentson slicing-based
debugging tools. In Proceedings of theFirst Workshop
on Empirical Studiesof Programming, (June 1986).
Ablex PublishingCo.,1986.

[18] P. McCullagh and J. A. Nelder. Generalized Linear
Models,2nded. ChapmanandHall, New York, 1989.

[19] A. K. Midha. Softwareconfigurationmanagementfor
the 21st century. Bell Labs Technical Journal, 2(1),
Winter1997.

[20] A. Mockus and L. G. Votta. Identifying reasonsfor
software changes using historic databases.In Inter-
national Conferenceon Software Maintenance, pages
120–130, SanJose,California, October11-14 2000.
ACM press.

[21] A. Mockus andD. M. Weiss. Predictingrisk of soft-
warechanges.Bell LabsTechnical Journal, 5(2):169–
180, April–June2000.

[22] V. Mosley. How to assesstoolsefficiently andquanti-
tatively. IEEESoftware, pages29–32,May 1992.

[23] T. Omerod and L. Ball. An empirical evaluationof
TEd, a techniqueseditor for prolog programming. In
Proceedingsof theSixthWorkshopon Empirical Stud-
iesof Programming. Ablex PublishingCo.,1996.

[24] A. Pal and M. Thompson. An advanced interface
to a switching software versionmanagement system.
In SeventhInternational Conferenceon Software En-
gineeringfor Telecommunications Switching Systems,
July1989.

[25] R.PostonandM. Sexton. Evaluatingandselectingtest-
ing tools. IEEESoftware, pages33–42,May 1992.

[26] M. Rochkind. Thesource codecontrol system. IEEE
Trans.onSoftwareEngineering, 1(4):364–370,1975.

[27] M. Shepperd and C. Schofield. Estimatingsoftware
projecteffort usinganalogies. IEEETrans.onSoftware
Engineering, 23(12):736–743, November1997.

[28] B. Shneiderman. Designingthe User Interface (2nd
Edition). Addison-Wesley, 1991.

[29] H. Siy andA. Mockus. Measuring domainengineering
effectson softwarecodingcost. In Metrics 99: Sixth
International Symposiumon Software Metrics, pages
304–311, BocaRaton,Florida,November1999.

[30] H. Siy andA. Mockus. Measuring domainengineering
effectson softwarecodingcost. In Metrics 99: Sixth
International Symposiumon Software Metrics, pages
304–311, BocaRaton,Florida,November4–61999.

[31] G. Snelting. Reengineering of configurations based
on mathematical concept analysis. ACM Transactions
on Software EngineeringandMethodology, 5(2):146–
189, April 1996.

[32] E. B. Swanson. The dimensions of maintenance. In
2nd Conf. on Software Engineering, pages492–497,
SanFrancisco,California,1976.

