
Interval Quality: Relating Customer-Perceived Quality To
Process Quality

Audris Mockus and David Weiss
Avaya Research
233 Mt Airy Rd

Basking Ridge, NJ 07920
{audris,weiss}@avaya.com

ABSTRACT
We investigate relationships among software quality mea-
sures commonly used to assess the value of a technology,
and several aspects of customer perceived quality measured
by Interval Quality (IQ): a novel measure of the probability
that a customer will observe a failure within a certain in-
terval after software release. We integrate information from
development and customer support systems to compare de-
fect density measures and IQ for six releases of a major
telecommunications system. We find a surprising negative
relationship between the traditional defect density and IQ.
The four years of use in several large telecommunication
products demonstrates how a software organization can con-
trol customer perceived quality not just during development
and verification, but also during deployment by changing
the release rate strategy and by increasing the resources to
correct field problems rapidly. Such adaptive behavior can
compensate for the variations in defect density between ma-
jor and minor releases.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—Software qual-
ity assurance

General Terms
Measurement, Reliability

Keywords
Software Metrics

1. INTRODUCTION
A lingering question for software development organiza-

tions is how to evaluate what the customers’ perception
of the quality of a software product is, particularly how
customer-perceived quality is related to observed in-process

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’08, May 10–18, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-079-1/08/05 ...$5.00.

quality. An organization that makes changes in its devel-
opment process in the expectation that software quality as
observed during development will improve, would especially
like to know that such in-process improvement will herald
improvement from the customer viewpoint.

Correlating in-process improvement with customer per-
ceptions has traditionally been a difficult problem. Success
in solving this problem could lead to ways of predicting cus-
tomer satisfaction with a product release, as well as ways
of suggesting what kinds of process improvements are most
likely to lead to improved customer satisfaction.

Our goal is to find a satisfactory way to quantify cus-
tomers’ perception of software quality in order to assess how
process improvements lead to better user experiences. Our
main focus is to find a practical approach to measure cus-
tomers’ perception of software quality, implement it in an
organization, and validate its performance.

The major transformation in telecommunications industry
towards IP telephony has increased customers’ and solution
providers’ concern about the quality and reliability of the
new platforms. Would they provide quality comparable to
the traditional Time Division Multiplex (TDM) solutions?
The impetus for this work was the perception of quality ex-
perts at Avaya’s software development organization that the
traditional quality measures do not match users’ perception
of quality and, therefore, they can not be meaningfully used
to assess the quality of the new IP platforms. The subse-
quent development and analysis of the new measure provides
some insights on why such dissatisfaction may occur.

We introduce an operationalization used in Avaya of a
measure that is based on the probability that a user ob-
serves an adverse event within several months of installing
software. We investigate its relationship with better known
process and product measures [18, 9, 8], such as defect den-
sity and mean time between failures (MTBF). We also inves-
tigate the relationship of these measures to changing busi-
ness and management priorities.

We call our measure ”interval quality” (IQ) because it is
based on observing failures during specific intervals after a
product has been released to customers. The letter “I” may
also stand for “Initial” or “Installation” because the interval
in question starts at the time of system installation. We
find surprising anti-correlation between several traditional
quality measures and the probability that a customer will
observe an adverse event. On the other hand, we observe
that a shift in business and management priorities, such as
focusing on quality rather than time to market, changed in
line with that probability, as did the MTBF.

We believe that the discrepancy may be at least partly ex-
plained by the fact that software quality can be controlled
not just during development and verification, but also in
early introduction (alpha and beta) phases and, most im-
portantly, during deployment.

Organizations generally have a fixed set of resources to
use for developing software and must make trade-offs about
what techniques and tools to use to achieve their quality ob-
jectives prior to delivering the software to customers. How-
ever, as previously shown, factors outside of the development
process also affect customer’s perception of quality [17]. The
deployment strategy used after the software is declared fit to
be delivered to customers is one such factor. In particular,
larger major releases are deployed more gradually, affecting
fewer customers and, therefore, raising relatively fewer issues
than would be expected based on release size alone. Minor
releases are deployed more rapidly, affecting larger numbers
of customers, and, therefore, raise more issues than would
be expected based on their small size.

Our primary contribution is IQ, a practical new measure
of software quality validated through its development and
use in a large software organization and the investigation of
its relationships with other quality measures, such as defect
density. Our observational study of the impact of process
on product quality finds differences between the behavior of
these measures and IQ.

We present a variety of quality measures calculated from
historical observations in order to facilitate further analy-
sis by other researchers and comparison with other prod-
ucts. We also describe the nature and possible causes of the
discrepancy and discuss the most appropriate measures of
customer perceived quality.

We first provide the context for the study in Section 3,
then we present the new measure of software quality in Sec-
tion 4. In Section 5 we compare the quality measures and
find dramatic differences. Validity issues are discussed in
Section 6. We briefly summarize related work in 2 and con-
clude in 7.

2. RELATED WORK
Related work includes a number of studies of the charac-

teristics of source code files with high fault potential. Many
studies have used several product measures, measurements
of a snapshot of the code itself, as predictors of fault likeli-
hood. Code size (lines of code) is the canonical fault predic-
tor. Measures of code complexity, such as McCabe’s cyclo-
matic complexity [13] and Halstead’s program volume [11]
are other examples of product measures. There are a num-
ber of empirical studies [26, 2, 24, 21, 25, 19, 1] of product
measures and fault rates.

Another class of measures for modeling fault rates are
based on data taken from the change and defect history of
the program. [28, 10] finds variables in the change history of
collections of files, such as numbers of changes to those files
and the average age of the lines in those files, which account
in part for the number of faults observed to affect those files
at a later time. COQUALMO [5] project size metrics and
various process (development process) factors predict defect
occurrences.

In contrast to the studies above, the work in [15] predicts
the probability of failure pertaining to a change of a software
entity, rather than to attempt to identify the probability of
failure or the number of failures for a software entity.

A different line of work can be found in the software reli-
ability literature. Here, one estimates the number of faults
remaining in a fixed software system, in order to predict how
many faults will be observed in a future time interval, as-
suming that the software does not continue to be changed.
See [20, 12, 23, 18, 7, 4].

In our previous work [17] we modeled the probability that
a user observes an adverse event and found that deployment
predictors have an enormous effect on such a measure.

The IQ measure attempts to unify many of the ideas pre-
viously put forth in measuring and analyzing changes and
measuring faults and failures in a way that can be used to
manage industrial software development.

3. BACKGROUND
To illustrate the context of the study we present relevant

aspects of the project and of the customer support process.

3.1 The customer support and Tier IV systems
Avaya uses a tiered support process. Lower tiers are han-

dled in the service organization while Tier IV represents a
very small fraction of issues that could not be resolved in
lower tiers and that are escalated to the development orga-
nization. We have described the trouble ticket system and
process in [17], here we focus on Tier IV and the develop-
ment systems and process as described above.

Tier IV tickets are routed to various groups specializing in
different products. More specifically, an issue raised against
a product may represent a defect in a different, interoper-
ating product. In such situations, the ticket is routed to
the most relevant group in Tier IV. We use the group in-
formation to exclude tickets not related to the products in
question.

For the releases we analyzed in developing IQ there are
approximately 3,000 Tier IV trouble tickets. They affect
about 60,000 systems in the field, out of about 4 million
listed in Avaya’s equipment database.

3.2 The software project
We examine the call processing software installed on many

Avaya telephony systems. This software system is an estab-
lished product and embodies several decades of knowledge
and experience in the telephony field. In a recent release,
the software contains approximately seven million lines of
code mostly in C and C++. The software development or-
ganization deploys major releases on a fixed schedule, with
subsequent minor releases that bundle patches and refine-
ments to the system.

Many releases are in the field and are used by tens of thou-
sands of customers, many of whose businesses depend on the
high availability of the product. This makes the software ex-
ceedingly difficult to enhance while maintaining the smooth
operation of the hardware/software combinations deployed.

Three primary systems contain information about the de-
velopment of the software. The Modification Requests (MRs)
tracking system and a version control system allow us to
identify and measure the size of the software releases and
numbers of defects and customer related defects. A Tier IV
issue tracking system contains customer problems escalated
to Tier IV, i.e., issues that could not be resolved by lower
tiers in a service organization and that were likely to require
software changes. Therefore they were escalated to Tier IV,
which is part of the software development organization.

In addition, we use service and deployment systems that
track, among other things, information about the time of
installation and upgrades by customers. We use them to
obtain the number of customers installing the releases and
the dates when these installations occur.

3.2.1 The software change process
When a change to the software system is needed, a work

item is created. Work items range in size from very large
work items, such as releases, to very small changes, such as
a single delta (modification) to a file. Figure 1 shows the
organization of changes and data attributes associated with
them in a typical change management system.

The project we consider here employs a version control
system (VCS), which maintains versions of the source code
and documentation, and a change request management sys-
tem (CMS) that keeps track of individual requests for changes,
which are known as modification requests, or MRs. Whereas
a delta is intended to keep track of lines of code that are
changed, an MR is intended to be a change made for a sin-
gle purpose. Each MR may have many deltas associated
with it. The project under consideration used the Sablime
system for problem tracking and an internal system based
on the Source Code Control System [22] for most of the ver-
sion control. It is possible to trace all software modification
to an MR (or several MRs). The modifications are typically
made for one of the following reasons.

1. Repairing previous changes that caused a failure dur-
ing testing or in the field.

2. Introducing new features to the existing system.

3. Restructuring the code to make it easier to understand
and maintain. (An activity more common in heavily
modified code, such as in legacy systems.)

An MR is raised against one release (where the defect is
first discovered), but it can be delivered to several releases
where the defect may manifest itself. Each release often
needs distinct changes because the underlying code base of-
ten differs.

MRs include, among other things, the MR reporter, the
release in which the MR was discovered, and the date the
MR was reported. Attributes include the software load
where the code was submitted, the resolver, resolution date,
and resolution status for each release to which the MR was
submitted. We used the CMS and VCS to obtain the new
feature and enhancement changes in each release as well as
changes in response to failures detected after the software
was deployed (field problems).

The text abstracts of the MRs related to a customer issue
include information about the customer(s) involved, soft-
ware releases they are running, and service tickets, filed by
customers, that triggered the development MR(s). MRs rep-
resent defects (duplicate MRs are identified and closed and
are not considered in the analysis), and service and Tier
IV tickets represent failures. Therefore, there is a many-
to-many relationship between the two. When we look at
customer facing measures we do not double count a failure
caused by multiple MRs (defects) and when we look at the
development process we do not double count defects (MRs)
that caused multiple failures.

To calculate the size of a release we count all MRs that
submitted code for the release. We use the release and load

Time. Date

#lines added

File ModuleDelta

MR

Developer

Release MR was
detected

Control
Version

System

CM
System

Release(s) MR was
submitted

Reporter

Rep. Date

Load

Resolver

Res. Date

Figure 1: Hierarchy of changes and associated data
sources. Boxes with dashed lines define data sources
(VCS and CMS), boxes with thick lines define
changes, and boxes with thin lines define proper-
ties of changes. The arrows define an “is a part of”
relationship among changes, e.g., each MR is a part
of a release. Dashed arrows indicate many-to-many
relationships. Attributes connected to “Release(s)
MR was Submitted” are specific to the MR-Release
pair.

(build number) to identify the target release. The date on
which a release becomes available to customers is known as
its General Availability, or GA, date. MRs submitted to
loads that are built after the GA date of that release are
considered to be patch MRs. Only MRs (and submitted
code) for loads that precede GA are included in the release
size measures.

To count field faults associated with a release we count
each MR only once. We count the MR against the release in
which the MR was detected. Some releases were deployed
several years ago, while others were deployed fairly recently.
To make the comparisons between the releases we restrict
the number of defects to the MRs found within ten months
of the GA date (based on the latest release we considered).

3.3 Advantages and pitfalls
There are a number of advantages to utilizing existing

project support systems, such as the CMS and VCS, when
modeling software development and support. Probably the
most obvious advantage is that the data collection is non-
intrusive. However that does not reduce the need for in-
depth understanding of a project’s development process and,
in particular, of how the support systems are used.

We benefit from a long history of past projects whose data
has been captured in project support systems, enabling his-
toric comparisons, calibration, and immediate diagnosis in
emergency situations. In some cases, additional data col-
lection may be needed to facilitate modeling, as was in our
case when we wanted to obtain the dates when systems were
deployed in the past.

The information obtained from the support systems is of-
ten fine grained, at the MR/delta/trouble ticket/customer
installation level. However, links to aggregate attributes,

such as features and releases, is often tenuous. Further-
more, there may be challenges when cross-linking project
support systems in different domains, such as the equipment
database and the CMS.

The information tends to be complete, as every action in-
volving development or support is recorded. However the
information about what the action pertains to may be non-
trivial to infer and some of the data entries, especially those
not essential for the domain of activity, tend to be inconsis-
tently or rarely supplied.

The data are uniform over time as the project support
systems are rarely changed since they tend to be business-
critical and, therefore, very difficult to change without major
disruptions. That does not, however, imply that the process
was constant over the entire period one may need to analyze.

Even fairly small projects contain large volumes of infor-
mation in the project support systems making it possible
to detect even small effects statistically. This, however, de-
pends on the extractability of the relevant quantities.

The development tools, such as, configuration manage-
ment and version control systems are used as a standard
part of the project, so the software project is unaffected
by experimenter intrusion. We should note that this is no
longer true when such data are used widely in organizational
measurement. Organizational measurement initiatives may
impose data collection requirements that the development
organizations might not otherwise use and modify their be-
havior in order to manage the measures tracked by these
initiatives.

The largest single obstacle for using the project systems
for analysis is the necessity to understand the underlying
process and the way the systems are used. This requires
validation of the values in fields used by the developers and
support technicians in order to assess the quality and us-
ability of the attribute. Common and serious issues involve
missing and, especially, default values that may render an
attribute unusable. Any fields that do not have a direct
role in the activities performed using the project system are
highly suspect and, often provide little value in the analy-
sis. As the systems tend to be highly focused to track issues
or versions, extracting reliable data needed for analysis may
pose a challenge.

4. QUANTIFYING CUSTOMER
PERCEIVED QUALITY

There are a variety of ways to measure customer per-
ceived quality, for example surveys and failure rates. We
focus on customer-observed reliability, often characterized
as MTBF [20] because we found the customer surveys to be
inadequate.

4.1 Interval Quality
Previous work indicated the critical importance of the size

of a software release [10, 16], the proximity to the release
date [17], and the proximity to the installation date [17] as
the primary drivers of software issues observed by a cus-
tomer. To ensure that our measures are useful in practice,
we work with the quality experts in the development teams
to arrive at a software focused measure of customer satisfac-
tion that can be used in managing a project. In addition to
reflecting the primary drivers, such a measure has to be easy
to calculate, easily understandable by a variety of people in

different roles, and available early enough to allow time for
corrective action.

To satisfy our goals we chose a measure that calculates
empirically the probability of a customer observing a soft-
ware issue within a short period after software installation.
Periods of 1, 3, and 6 months were chosen to allow faster
calculation of the measure (1 month) and a more robust es-
timate of quality (6 months). For the one-month-metric we
have to wait at least one month after GA to start observing
the customers who had a full month of experience running
the system. One month is long enough to get an early in-
dication of quality and short enough so that a development
team can act quickly enough to take corrective actions if the
perceived quality is problematic. The six-month-metric re-
quires at least six months wait at which time it may be too
late to take corrective action. Therefore, while it is more ac-
curate than the one-month-metric, it can provide value only
in a historic context, limiting its practical applications.

To make the measure simple to understand we had to ex-
clude an important factor from consideration, i.e., the prox-
imity to the general availability (GA) date. In [17] we found
that the first customers to receive a new release had a much
higher probability of reporting a software-related issue than
later customers. The most probable underlying causes in-
cluded the lack of installation and configuration skills (a
misconfigured system is often more likely to reveal a latent
fault) early in the deployment and delivering patched sys-
tems for later customers. This early-customer trend implies
that the quality of the latest release is estimated conserva-
tively at first, because at that time only customers who had
deployed immediately after GA are represented by the met-
ric. This drawback was not deemed to be serious, in fact, it
could provide impetus for more aggressive action.

Because these metrics are empirically calculated based on
intervals after product release we call them collectively the
interval quality, or IQ.

The probability that a customer observes a failure within
one month of installation is estimated as the fraction of cus-
tomers that had an issue within one month of installation.
The population of all customers who had the system in-
stalled or upgraded with the particular release between one
and seven months after the GA date is used. We also ex-
clude systems that had the release for less than one month.
We chose the seven month period to be able to calculate
the 3-month probability for the latest release we consider.
Another reason was that a new release often appears within
seven months. Finally, the failure rate drops as we move
further from the GA date, making it less likely that an un-
acceptably high failure rate would be observed.

When we do the calculation for the three- and six- month
intervals, the population of systems declines as some sys-
tems are upgraded to newer releases during this period and,
therefore, do not stay on the same release long enough to be
included in the sample. Given the very low probability of
the failure we need very large sample sizes to get reasonably
accurate estimates. Therefore we estimate three probabili-
ties separately:

1. p̂1 — the fraction of systems to have a failure in the
first month of usage as described above;

2. p̂2−3 — the fraction of systems to have a failure in
months two and three of usage but no failure in the
first month;

3. p̂4−6 — the fraction of systems to have a failure in
months four through six of usage but no failure in the
first three months.

The estimate of the probability of the failure in the first
three months is p̂1+ p̂2−3 and the estimate of the probability
of the failure in the first six months is the sum of all three
estimates.

In addition to providing a more accurate estimate this
composite estimation ensures consistency so that the esti-
mate for one month is always less than the estimate for
three months and the estimate for three months is always
less than the estimate for six months.

We also compare the estimates to a previous release to
determine if there are significant differences.

4.2 Other measures
We have compared this measure to a number of other

measures that have been used in software projects. We con-
sidered the defect density that was successfully used in, for
example, [9], and the MTBF. Finally, we also considered
the change in business and management priorities over the
considered time period.

4.2.1 Post GA defects
We expected the number of post-GA defects to correlate

with the release size and customer perceived quality, reflect-
ing the fact that major releases tend to have more defects
and tend to be perceived as less reliable by customers. We
have analyzed defects found up to 10 months after the GA
date to make the numbers comparable between older re-
leases that have been in the field for many years and the
most recent release. As a lower bound we calculated the
number of post-GA MRs that could be traced to individual
customer(s), while an upper bound was the total number of
field MRs raised against a release.

4.2.2 Post GA defect density
Dividing the number of post-GA (field) problems by the

number of pre-GA code submission MRs or by the non-
commentary source lines of code (NCSL) that were added,
modified, or deleted in a release should provide a character-
istic of how good the development process was. We expected
the reductions in this defect density to be reflected in the
improvements of customer perceived quality.

4.2.3 Number of Tier IV tickets and MR related tick-
ets

We expected the number of Tier IV tickets to reflect cus-
tomer perceived quality. We considered only tickets for sys-
tems installed or upgraded within seven months of the GA
date and tickets created within ten months of the GA date
to preserve comparability between old and new releases and
to the field MR counts that represent the same ten month
periods.

4.2.4 NCSL, pre-GA MRs and Runtime
NCSL, pre-GA MRs and Runtime are size measures needed

to calculate the defect density and MTBF. The pre-GA MRs
were obtained from the Sablime system [14]. MRs that did
not contribute code to the release in question or MRs that
were created after the GA date were excluded. The NCSL
added and changed were collected for every MR as a part of

the load process. We have included NCSL for all the pre-GA
MRs related to a release.

Runtime for a system was calculated as the interval be-
tween the installation and 10 months after GA or the time of
upgrade to the next release, whichever was less. Runtimes
were added over all the systems installed in the 7 month pe-
riod following the GA. These fixed periods were used in order
to make comparisons between recent and older releases.

4.2.5 MTBF
The MTBF can be estimated by dividing the total number

of faults by the total running time of the deployed systems.
We expected this measure to follow IQ closely. Here we
consider software specific faults such as the Tier IV tickets
and the trouble tickets that result in an MR. Only systems
deployed within seven months of GA and tickets from such
systems created within ten months of GA were considered
for the reasons described above.

5. COMPARISON
In order to evaluate which other measures may be most

reflective of the IQ we present and compare them in the
following subsections. We first provide the measures vali-
dated as described below in order to encourage alternative
analyses or interpretations by other researchers. Any in-
terested reader can easily perform additional analyses using
the provided measures. Finally, we hope that the availabil-
ity of such information will encourage advances in software
engineering and will provide incentive to evaluate customer
perceived product quality based on quantitative informa-
tion. The latter would encourage customers to put pressure
on other software organizations to start collecting and pub-
lishing similar data. Such an outcome would be likely to
advance software engineering practices and to bring benefits
to customers and software providers.

Obtaining and validating measures in Table 1 involved
a substantial multi-year effort to learn about the various
processes and the supporting systems from which the data
were retrieved. It is substantially easier to obtain and vali-
date a single type of data, such as software defect density in
development, because quality engineers and expert develop-
ers exist for a project who may already track and validate
some or all of the relevant quantities. Unfortunately, it is
much less likely to find someone who has an in-depth un-
derstanding of all the parts involved when considering the
entire process from development to sales and then support.
This difficulty of integrating different processes and data col-
lected for the internal process needs may partly explain the
dearth of empirical studies linking development process im-
provements to improved customer perceptions. Indeed, the
results presented here may be unique at this time, and we
hope that it will motivate more studies in this challenging
area.

In addition to development and service organizations, the
information from ordering systems had to be integrated to
obtain the number and properties of the installed base. We
had to warehouse weekly snapshots of the installed base over
four years to be able to reconstruct accurate installation or
upgrade dates in the past. The operational systems could
be easily enhanced to query such information directly, but
the lack of users with such analytic needs has left such func-
tionality missing.

The measures in Table 1 originate from development, or-

dering, and support domains. The development domain con-
tains the size of the releases in thousands of NCSL (KNCSL)
and in the number of pre-GA MRs (pre-GA) submitted to
each release. The problems are represented by counts of
field MRs (Field), and field MRs traceable to the reporting
customer (Field-C).

Ordering information is used to determine the date of in-
stallation or upgrade, and the properties of the system. It
allows calculation of the installed base (NSys) for each re-
lease over the periods of interest and calculation of the total
runtime (in years) of such systems (Runtime).

The service domain includes counts of MR-related tick-
ets (MR tickets), counts of Tier IV tickets (Tier IV), and
our quality measures for the probability of Tier IV and MR
events (multiplied by 1000 for better readability).

There were two major releases “r1.1” and “r2.0”. The rest
were minor releases. We should note that “r1.1” was not the
first release of software - there were many releases before
that.

5.1 Defect density
We start by investigating how well the traditional de-

fect density measure is correlated with the perceived quality
measure. It makes sense that decreasing defect density is
good practice and that it should lead to improvements in
customer perceived quality. The reality, as it turns out, is
somewhat complicated by the fact that the customer per-
ceived quality may be affected by a variety of other prac-
tices.

We prefer to use at least two operationalizations of defect
density and, in this case we use two scalings, one by NCSL
and one by the number of pre-GA MRs. Figure 2 indicates
the lack of correlation with IQ. In fact the correlation (we use
Spearman correlation as the distributions are not normal) is
negative, −0.7, and is significantly less than zero (p-value of
.07) in the case of MR normalized density with both quality
measures. The signal in the data must be very strong for
such a small sample, i.e., six data points, to have statistical
significance. The two operationalizations of defect density
had a correlation of .83 and the correlation was significantly
greater than 0 (p-value of .03).

In fact, we see that the defect density is lowest for ma-
jor releases and highest for minor releases, while the quality
measure shows the opposite behavior. From the numeric
perspective the defect density calculates defects per line of
code or per change and in larger releases the denominator
creates the trend as the number of defects is relatively con-
stant (see Table 1). In the quality measure the denominator
represents the number of customers and is larger in minor
releases that are deployed more broadly.

From the release deployment perspective it is important
to resolve defects on a timely basis. Such resolution requires
significant staffing resources that can be best utilized if the
work-flow is relatively constant. Therefore, deploying more
fault prone releases gradually and the most robust minor
releases more rapidly results in a relatively constant inflow
of issues that can be handled in the most efficient manner.
This, however, disassociates the traditional defect density
measure from the probability that a customer will experience
a software issue.

We do not imply that the lack of positive correlation some-
how reduces the need to improve defect density, as improve-
ments in defect density could allow more rapid deployment

or lower staffing for support and Tier IV. However, it is im-
portant to be aware that the deployment strategy may more
than compensate for the variations in the defect density and,
therefore, the improvements in the software process may not
be always reflected in the customer perceived quality.

5.2 MTBF
Mean time between failures is a common hardware reli-

ability measure. It may not be used as often for software
partly because it is not easy to separate software and hard-
ware issues and partly because it is quite difficult to estimate
for software. Furthermore, hardware (especially mechanical
hardware) tends to wear out, while software does not have
an analogous property. Software failures are more difficult to
count (unlike the hardware faults that require replacement
parts that leave traces in ordering and support systems). It
is often harder to get precise information on the deployed
software base, because, unlike hardware, software can often
be upgraded without producing traces in the dispatch or
ordering systems.

We use calendar time rather than run-time because we
think it more closely accords with customer perceptions of
quality and there is no way we can observe actual run time.
In fact, the considered systems are intended to run con-
tinuously in the field, except when there is a failure or an
upgrade.

The MTBF is impacted by the proximity of the installa-
tion date to GA, by the time elapsed after installation, and
the utilization of the system as was shown by models in [17].
Therefore, to make release numbers comparable we restrict
the calculation to customers installing within 7 months of
GA to make sure we have sufficient data for the latest ana-
lyzed release. We also restrict observation to faults observed
in these installations within 10 months of GA to ensure that
all considered systems had sufficient runtime.

It is important to note that MTBF as calculated does
not represent MTBF of a long-running system since the
probability of observing failure drops dramatically with time
elapsed from the installation and from the GA dates. How-
ever, it is useful to compare the behavior of releases close
to installation and GA dates — times when it is most likely
for a customer to encounter an issue.

Availability is a related measure representing the percent
of time the system is up and running (available for oper-
ations) and requires the knowledge of an average outage
duration in addition to the MTBF. It is very difficult to
determine an average outage interval precisely, therefore we
present availability numbers for a range of such intervals.
The outage durations vary widely from a few seconds, where
outages are repaired in software, to hours and, possibly, days
when a dispatch is needed to replace failed hardware or a
workaround or patch has to be developed for a complex soft-
ware issue.

The considered systems had to satisfy various availability
requirements. Most had three nines (available 99.9% of the
time) availability requirements, but many have requirements
of five nines. We expect the lower availability requirements
systems to dominate our sample as there are far more of
them. Given realistic estimates of outage times it appears
(see Table 2) that most of the systems far exceed the avail-
ability requirements, at least from the software perspective.
For example, the table shows that for the empirically calcu-
lated MTBF of release 1.1, which was 297921 hours, achiev-

Releases r1.1 r1.2 r1.3 r2.0 r2.1 r2.2
KNCSL 376 64 154 235 188 60

Development pre-GA 2971 1190 1155 2189 1408 594
Domain Field 112 99 105 96 100 92

Field-C 61 68 68 51 60 54
Ordering NSys 4575 6398 10943 8417 16168 14073
Domain Runtime 2005 3780 5908 3903 8477 3594

MR tickets 59 63 78 78 111 20
Tier IV 303 307 382 293 515 174

T4Quality1M 19 13 10 11 7 7
MrQuality1M 9 5 4 4 2 2

Service T4Quality3M 37 28 21 20 16 17
Domain MrQuality3M 16 12 7 8 5 3

T4Quality6M 52 41 30 26 26
MrQuality6M 23 16 10 9 8

Table 1: Primary measures

DL

DL

DL

DL

DL

DL

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Qu
an

tity

DM

DM
DM

DM

DM

DM

F1

F1

F1
F1

F1
F1

F3

F3

F3
F3

F3

F3

r1.1 r1.2 r1.3 r2.0 r2.1 r2.2

DL
DM
F1
F3

DefPerKLOC/100
DefPerPreGaMR*10
Probability 1m.
Probability 3m.

Figure 2: The trend of the defect density and quality measures over releases.

ing .999 availability requires an average outage time of 298
hours. Since 298 hours is clearly much more than any sen-
sible estimate of the average outage time, even release 1.1
easily meets 3 9s availability. It is worth noting that a sig-
nificant portion of customer issues that result in a software
change do not cause service outages, therefore the presented
numbers only provide a lower bound on MTBF and avail-
ability.

Type MTBF .999 .9999 .99999
r1.1 Major 297921 298 30 3
r1.2 Minor 525995 526 53 5
r1.3 Minor 663948 664 66 7
r2.0 Major 438672 439 44 4
r2.1 Minor 669480 669 67 7
r2.2 Minor 1575329 1575 158 16

Table 2: MTBF and the required average outage
times for three availability levels. Intervals are mea-
sured in calendar hours.

Although MTBF behaves similarly to the failure proba-

bility measure, it mixes recently and long-ago installed sys-
tems. This prevents observing the drop in failure probability
with time expired after the installation date. It also requires
even more data (runtime) than the measures of failure prob-
ability.

5.2.1 Change in business priorities
The first product release we considered in this work was

a release that was motivated by time-to-market needs that
were emphasized by the fact that Avaya was a new company,
although a spin-off of Lucent and therefore initially staffed
with many experienced software developers, and needed rad-
ically new products in the market to survive.

The impact on the product development organization was
profound, especially since it was not used to a rapidly-changing
market situation. The resulting organizational changes were
documented in an in-depth goal-oriented assessment [27] of
the project six months before completion.

Figure 3 presents the quality measures over a sequence
of releases. Significantly different estimates from the pre-
vious release are indicated with a star(s) at the top of the
bar. One, two, and three stars correspond to p-values of .1,

.05, and .01. We can see quality improve; a number of the
decreases are significant.

Over time business priorities evolve and tend to change
focus. While it is difficult to quantify the “focus”, let alone
the change in focus, we feel that there are cyclical trends in
software-based industries, as in many other industries, cy-
cling among quality, cost, and time-to-market. The primary
reason may be the fact that these qualities have to be traded
off in order to improve one of them. When the emphasis is
on time-to-market, quality may suffer. As we mentioned, in
the beginning of the considered period there were real and
perceived reasons for quickly developing IP based solutions,
while in the subsequent years the downturn of the industry
and maturing of the technology caused the focus to move
towards reliability and availability. We believe that one rea-
son for the trend in improved IQ in Figure 3 is a shift in
business priority towards quality after an initial emphasis
on time-to-market. The approximate interval over which we
have seen a number of indications (organizational initiatives,
management directives, and activities of the development or-
ganization) for the shift in priority from time-to-market to
customer perceived quality occurred during releases “r1.3’
and “r2.0” and is depicted in Figure 3. In particular, we be-
lieve that the IQ of the major release “r2.0” would be higher
than IQ of the previous minor release “r1.3” if not for the
shift in focus.

r1.1 r1.2 r1.3 r2.0 r2.1 r2.2

1 Month
3 Months
6 Months

P
ro

b
a
b
ili

ty
0
.0

0
0

0
.0

1
0

0
.0

2
0

**
*

**

**

**
*

**

**
*

**

**
*

Change in Priority

Figure 3: The trend of the IQ over releases.

6. VALIDATION
Does the proposed measure of customer perceived quality

accurately reflect customer perceived quality? Our measure
reflects some aspects of installability (a significant portion of
issues involve installation/configuration, especially for early
adopters of major releases, see [17]) and aspects of maintain-
ability (the remaining issues observed over the six month
period). It clearly does not capture feature-richness, often a
strong customer satisfier. In fact, it may be that the over-
all quality (if it could be quantified) may stay constant as
the releases with the most radical new features (presumably
valued by customers) are balanced by the larger likelihood
to experience problems.

Another aspect of quality represents the time it takes to
provide a fix. In, for example, [6], the amount of time to
resolve an issue is closely related to customer satisfaction
measured through a survey. While IQ does not capture this

aspect directly, it appears to be important from the business
perspective. In particular, the steady stream of issues pro-
vides a constant work-flow for the services and Tier IV. The
lack of peaks in problem inflow intensity (which can be made
possible by using an appropriate deployment strategy) pro-
vides a steady stream of work. The organization can then
anticipate and assign sufficient staffing to make sure that
the work items are handled on a timely basis.

At this point in time we believe our approach to be the
most practical for the considered types of systems and the
quality aspects that summarize faults and installation is-
sues. Our belief is based on our experiences in developing
the measure and on the amount and quality of data that
may be commonly available. The use of IQ in the produc-
tion environment suggests its value for internal quality man-
agement.

A direct approach to validate the customer satisfaction
measure with customer satisfaction surveys, see, for exam-
ple, [3], turned out to be problematic in our case. First, for
the analyzed back-office-systems that have massive numbers
of end users, it is not clear which users to target. In fact,
the recorded outage information is likely to provide more
accurate results than a sample of users. The existing sur-
veys are not uniform over time and tend to focus on IT
managers who make investment decisions that strongly de-
pend on factors that may only tangentially depend on the
observed problems.

In addition to understanding how IQ reflects customer
perceived quality we spent a lot of effort to make sure that
the operational quantities obtained reflect the reality. We
have many years of experience extracting and cleaning data
from software project support systems such as version con-
trol and problem tracking systems. While the full descrip-
tion of the methodology is beyond the scope of this submis-
sion, we highlight some specific issues related to integrating
information from diverse development, customer support,
and ordering systems.

We first familiarized ourselves with the variety of ways the
systems are used and the types of records kept. As many of
the systems (especially in development support) do not keep
data in relational databases, methods to recognize, extract,
and validate relevant fields were needed. In particular, the
information about a customer and the support ticket was
embedded within the text of the MR description in various
formats that had to be recognized and validated. Below we
describe some basic principles we used to obtained desired
quantities, including focusing on the requirements for our
analysis and on basic validation based on multiple opera-
tionalizations, cross-linking systems, and obtaining bounds
on desired quantities. We also discuss model-level valida-
tion where normalization or subset selection is based on
well-known properties of software development and product
support.

6.1 Extract according to objectives
After familiarizing ourselves with the project support sys-

tems we analyzed the properties of the extracted data to
validate the reliability of various attributes and their rele-
vance to the measures of interest. In particular, we found
that only a subset of MRs that submit code affect the release
content. Code that does not end up in a release can not di-
rectly contribute to customer observed issues. Our objective
was focused on what could contribute to problems (MRs in-

volved in code submissions to a release) and the problems
themselves (field MRs).

It is worth remarking that the notation used to denote a
release was different depending on what field is being used
to determine the release. For example, the field for “release
detected” used different notation than the field indicating
the releases where the MR was submitted. The notation
has also changed over time. We had to extract and inspect
all of the different recorded values to assign them to the cor-
responding releases. Of course, the notation used to denote
releases in service issue tracking systems was distinct from
the one used in development systems.

As noted previously, a single MR had to be counted in all
releases to which it was submitted because the submission
introduced a possibility of a defect. However, we counted
an MR only once for the release in which it was detected
to make sure we count unique defects. The submissions of
the same MR in newer releases were intended to prevent
potential failures.

In cases where there was a lack of relevant data (historic
deployment information) we had to set up additional auto-
matic data collection facilities and, over the last four years,
have collected information on a number of releases sufficient
for the analysis.

6.2 Multiple operationalizations and integra-
tion

We always try to use multiple operationalizations of the
same measure. Mismatches between operationalizations are
investigated and may indicate errors in data extraction or
processing, changes (or the lack of understanding) of the
underlying process, or high sensitivity of the measure it-
self. We try to design different operationalizations in a way
that provides the upper and lower bounds on the quantity
in question. For example, the total number of field MRs
represents an upper bound on the number of known defects,
because some field MRs are enhancements delivered after
the GA date. The number of field MRs that can be traced
to customers or trouble tickets provides a lower bound, be-
cause there may be field MRs where a customer or a trouble
ticket are not identified.

This example also illustrates another practice useful when
integrating data from different systems. While each system
focuses on its main purpose (MRs on software versions, and
trouble tickets on customer issues) some attributes such as
the trouble ticket number or a customer system ID may ap-
pear in MR systems, or the MR number may appear in Tier
IV or trouble ticket systems. Such a link often establishes
the lower bound on the number of entities that pertain to
another domain as the occurrence of these IDs is usually
entered in a free form text field and may be missed.

6.3 Basic normalization
We have taken steps, where possible, to adjust the ob-

served quantities so that we are not simply observing the
differences that are known from existing models and expe-
rience to be caused by different times of exposures or dif-
ferences in size or complexity. For example, to make sure
that longer exposure of the older releases does not bias the
results, we have selected only events within ten months of
the GA for each release, so that all the compared releases
have similar time exposures. Similarly we make the cus-
tomer populations in the quality metric similar, by ensuring

they had identical runtime and were deploying in similar in-
tervals from the GA date (both factors are known to affect
the probability of observing defects). The fact that we are
looking at the probability of a customer observing a failure
adjusts for the number of customers — having no customers
would make software perfect because no failures (and hence
no post-GA defects) would be found.

When investigating the defects we adjust for the release
size, because given the same deployment rate the larger re-
leases would result in more discovered faults. That leads
to investigation of the defect density, not of the number of
defects.

6.4 Other considerations
Even over the short period of four years presented here,

there were significant changes in the systems used. For ex-
ample a different system was introduced to track Tier IV
tickets that we had to integrate into our analysis.

We have heavily utilized in our work the previous experi-
ence on quality and other organizational metrics gained in
this and other products.

To verify that the approach works more broadly we have
applied the technique on a completely different product and
obtained similar results.

Despite all the steps we have taken, the observational na-
ture of the study limits us from drawing causal inference.

7. SUMMARY
Software organizations are complex and must plan for or

rapidly react to a number of eventualities. Therefore, obser-
vational studies of such organizations have to look at many
different aspects of their behavior to assess what changes
or improvements affect customer perceived product quality.
Only an extensive cost-benefit analysis can provide ratio-
nal answers of the relative effort that needs to be spent in
requirements identification and specification, design, devel-
opment, verification, and deployment. The optimal solution
is likely to differ depending on the types of products, the
customer segments, and the reliability and availability re-
quirements of the particular business segment.

We have developed and evaluated IQ, a practical measure
of customer perceived quality based on the probability that
a customer will observe a software problem calculated from
information that could be obtained from software problem
tracking and customer support systems. IQ may therefore be
applicable in a wide variety of projects. IQ is used in Avaya
to determine if the quality of the releases is improving over
time and can be used to trigger quality improvement efforts
ranging from slowing deployment to increasing staffing in
order to resolve customer issues on a timely basis.

In our study we have observed a lack of association be-
tween the commonly used software quality measures such as
defect density and the improvement in customer perceived
software quality. We found that organizational change in
focus from time-to-market to customer quality has been re-
flected in several measures of customer perceived software
quality. We also noticed that the inflow of work from cus-
tomer problems was quite uniform over time, suggesting that
the defect density is balanced with deployment strategies to
control the inflow of work and to ensure that there are suf-
ficient resources to handle this inflow efficiently and in a
timely manner.

Furthermore, we considered defect density and MTBF

along with a number of other measures and evaluated them
in comparison to IQ. We hope that our work will provide
incentive to evaluate customer perceived product quality
based on quantitative information. We also hope that the
publication of such information will encourage customers to
request their software providers to start collecting and pub-
lishing similar information.

We believe that the presentation of software development,
product support, and software reliability measures is unique,
and may encourage more research in this important area and
may trigger similar publication from other products leading
to advances in software engineering practices and bringing
benefits to customers and software providers.

Acknowledgments
We thank E. Moritz for her expertise, motivation, and con-
tributions in developing the quality measure.

8. REFERENCES
[1] V. Basili, L. Briand, and W. Melo. A validation of

object-oriented design metrics as qualityindicators.
IEEE Transactions on Software Engineering,
22(10):751–761, Oct 1996.

[2] V. Basili and D. Weiss. Evaluating software
development by analysis of changes: Some data from
the software engineering laboratory. IEEE Trans. on
Software Engineering, February 1985.

[3] M. Buckley and R. Chillarege. Discovering
relationships between service and customer
satisfaction. Proceedings of the International
Conference on Software Maintenance, pages 192 – 201,
1995.

[4] D. A. Christenson and S. T. Huang. Estimating the
fault content of software using the fix-on-fix model.
Bell Labs Technical Journal, 1(1):130–137, Summer
1996.

[5] S. Chulani. Coqualmo (constructive quality model) a
software defect density prediction model. Project
Control for Software Quality, 1999.

[6] S. Chulani, P.Santhanam, D. Moore, and G. Davidson.
Deriving a software quality view from customer
satisfaction and service data. European Conference on
Metrics and Measurement, 2001.

[7] S. G. Eick, C. R. Loader, M. D. Long, L. G. Votta,
and S. VanderWiel. Estimating software fault content
before coding. In Proceedings of the 14th International
Conference on Software Engineering, pages 59–65,
Melbourne, Australia, May 1992.

[8] E. N. Fenton and P. S. L. Software Metrics: A
Rigorous and Practical Approach. PWS Publishing
Company, 20 Park Plaza, Boston, second edition
edition, 1997.

[9] R. Grady and D. Caswell. Software Metrics:
establishing a company wide program. Prentice Hall,
Englewood Cliffs, NJ, 1987.

[10] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy.
Predicting fault incidence using software change
history. IEEE Transactions on Software Engineering,
26(2), 2000.

[11] M. H. Halstead. Elements of Software Science.
Elsevier – North Holland, 1979.

[12] J. Jelinski and P. B. Moranda. Software reliability
research. In W. Freiberger, editor, Probabilistic Models
for Software, pages 485–502. Academic Press, 1972.

[13] T. J. McCabe. A complexity measure. IEEE Trans. on
Software Engineering, 2(4):308–320, Dec. 1976.

[14] A. K. Midha. Software configuration management for
the 21st century. Bell Labs Technical Journal, 2(1),
Winter 1997.

[15] A. Mockus and D. M. Weiss. Predicting risk of
software changes. Bell Labs Technical Journal,
5(2):169–180, April–June 2000.

[16] A. Mockus, D. M. Weiss, and P. Zhang.
Understanding and predicting effort in software
projects. In 2003 International Conference on
Software Engineering, pages 274–284, Portland,
Oregon, May 3-10 2003. ACM Press.

[17] A. Mockus, P. Zhang, and P. Li. Drivers for customer
perceived software quality. In ICSE 2005, pages
225–233, St Louis, Missouri, May 2005. ACM Press.

[18] S. N. Mohanty. Models and measurements for quality
assessment of software. ACM Computing Surveys,
11(3):251–275, September 1979.

[19] J. C. Munson and T. M. Khoshgoftaar. Regression
modelling of software quality: Empirical investigation.
Information and Software Technology, pages 106–114,
1990.

[20] J. D. Musa, A. Iannino, and K. Okumoto. Software
Reliability: Measurement, Prediction, Application.
McGraw-Hill Book Company, 1987. ISBN:
0-07-044093-X.

[21] N. Ohlsson and H. Alberg. Predicting fault-prone
software modules in telephone switches. IEEE Trans.
on Software Engineering, 22(12):886–894, December
1996.

[22] M. Rochkind. The source code control system. IEEE
Trans. on Software Engineering, 1(4):364–370, 1975.

[23] G. J. Schick and R. W. Wolverton. An analysis of
competing software reliability models. IEEE Trans. on
Software Engineering, SE-4(2):104–120, March 1978.

[24] N. F. Schneidewind and H.-M. Hoffman. An
experiment in software error data collection and
analysis. IEEE Trans. on Software Engineering,
SE-5(3):276–286, May 1979.

[25] V. Y. Shen, T.-J. Yu, S. M. Thebaut, and L. R.
Paulsen. Identifying error-prone software–an empirical
study. IEEE Trans. on Software Engineering,
SE-11(4):317–324, April 1985.

[26] D. Weiss. Evaluating software development by error
analysis: The data from the architecture research
facility. J. Systems and Software, 1:57–70, 1979.

[27] D. Weiss, D. Bennett, J. Payseur, P. Zhang, and
P. Tendick. Goal-oriented software assessment. In
Proceedings of the 24th International Conference on
Software Engineering, pages 221 – 231, Orlando,
Florida, 2002. ACM Press. ISBN: 1-58113-472-X.

[28] T. J. Yu, V. Y. Shen, and H. E. Dunsmore. An
analysis of several software defect models. IEEE
Trans. on Software Engineering, 14(9):1261–1270,
September 1988.

