Growth of Newcomer Competence: Challenges of
Globalization

Minghui Zhou
Peking University
Key Laboratory of High Confidence Software
Technologies, Ministry of Education
Beijing 100871, China
zhmh@pku.edu.cn

ABSTRACT

The transfer of entire projects to offshore locations, the
aging and renewal of core developers in legacy products,
the recruiting in fast growing Internet companies, and the
participation in open source projects, present similar chal-
lenges of rapidly increasing newcomer competence in soft-
ware projects. In particular, culture differences, communi-
cation complexity, and the rapid influx of developers with
little or no project knowledge common in these phenom-
ena pose practical and research questions for software en-
gineering. For example, how do different cultures impact
project learning? Are there best practices for competence-
enhancing communication? How to learn from the experi-
ences of top developers to improve the training of newcom-
ers? What resources and tools can be provided to help new-
comers learn faster and become more productive? These
questions sketch a project-learning-focused agenda needed
to address outlined challenges. We propose how emerging
measurement methods utilizing rich data in software reposi-
tories and the theoretical frameworks based on cognitive and
organizational science may be applied to address these chal-
lenges and to improve understanding of how humans learn.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—performance mea-
sures; J.4 [Computer Applications]: Social and Behav-
ioral Sciences—soctology

General Terms

Performance, Measurement, Human Factors

Keywords

Project competence, culture difference, communication, learn-
ing trajectory, recommending systems, universal repositories

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

FOoSER 2010, November 7-8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11 ...$10.00.

Audris Mockus
Avaya Labs Research
233 Mt Airy Rd, Basking Ridge, NJ
audris@avaya.com

1. INTRODUCTION

The transfer of existing projects to offshore locations raises
the question of how to speed up the learning of project’s
newcomers: “all (outsourcing) teams have similar experience
levels, and all have had an influx of graduates and are strug-
gling to get them up to speed’ in the words of an outsourcing
manager.

Similarly, the retirement of core developers in mature legacy
products that started in the 90’s and earlier, leaves these
projects without original creators and raises the question of
how the newcomers should learn about the product. A top
architect in a 30-year-old call-center project expressed his
anxiety: “We need to make sure people understand the skill
of our dwindling set of experts. Original developers probably
understood how features would work and what feature inter-
actions worked, but subsequent developers who are adding
to the code are not necessarily aware of the whole context.”
At the same time, the boom in Internet applications cre-
ated many successful Internet companies, whose fast growth
demands continuous learning from their employees. ”Most
of our projects only last for several months, that really re-
quires the learners to be fast enough” according to the chief
architect of Taobao (top e-commerce site in China).

Furthermore, the explosion of Open Source Software (OSS)
development, raises the question of how individuals and com-
panies should learn to participate in the OSS projects. For
example, the first author has led a group from Peking Uni-
versity that over the last decade has built and later merged
an application server with JOnAS (another open source AS)
1. Numerous issues had to be recognized and addressed, in-
cluding culture, language, time-zone, network bandwidth,
and, most importantly, accessibility to the knowledge about
the code and the development practices.

As Fischer [13] noted, phenomena such as globalization,
increasing trends to outsource high-level cognitive tasks, and
the need to participate effectively in addressing complex
world problems are changing how we think, learn, work,
and collaborate. These phenomena pose a crucial challenge:
bringing the project newcomers up-to-speed and developing
project competence. Thus we need a better understand-
ing of how developers learn in a software project, how to
make projects more self-documenting, and how to create in-
novative resources and tools that can facilitate newcomer
learning and productivity.

Human learning has been studied in cognitive science, de-

"http://jonas.ow2.org

velopmental psychology, and organizational science. More
specifically, the mind and brain, the processes of thinking
and learning, the neural processes that occur during thought
and learning, and the development of competence are in-
tensively studied. What is perhaps currently most striking
is the variety of research approaches and techniques that
have been developed and ways in which evidence from many
different branches of science are beginning to converge [4].
Therefore, not only can we borrow the insights from these
disciplines to understand the developers’ learning, for ex-
ample, as Curtis [9] argued, cognitive science is a paradigm
that offers the best opportunity to study and gain control
over the largest source of influence on project performance,
but also to help understand how humans learn in general.

On the other side, many of these advances have been en-
abled by better data and better analysis tools. The most
salient aspect to the study of developer project competen-
cies 2 is the rich data sources in software project reposito-
ries ranging from aggregate measures of release quality to
individual actions of a developer recorded by IDEs®. Many
methods and tools to analyze software data are being de-
veloped in the software engineering community, but even
more work is outside. It is enabled by increasingly detailed
collection of data about users and consumers, and driven
by advertisement, retail and other segments of the economy
that dwarf software engineering in size. Clearly, methods
and tools from these fields will find use in quantifying and
solving the individual competence problems, for example,
the use of social network measures to show the most influ-
ential developers, the summaries of how developers commu-
nicate while resolving problems, and the studies of culture
differences.

2. LEARNING IN GLOBAL CONTEXT

The Legitimate Peripheral Participation approach [18] pro-
poses that learning, i.e., the learners’ participation in prac-
tice, is at first peripheral but increases gradually in en-
gagement and complexity. In software projects, the prac-
tice is performing regular project tasks. It poses numer-
ous challenges in globalized software development, for ex-
ample, when developers attempt to integrate artifacts pro-
duced by heterogeneous tools, when they communicate with
colleagues in a different time zone or speaking a different
language. These challenges often lead to adverse results.
For example, Mockus [22] found that one highly experienced
developer may need up to six new replacement developers
in the offshore location in large software projects, Herbsleb
and Mockus [15] found that the time it takes to complete
distributed tasks is almost three times longer than for co-
located tasks.

Better understanding of how developers increase project
competencies with practice is needed to resolve these issues.
In the literature there are two proposed ways to address
them. One is trying to understand empirically what hinders
or helps the developers’ learning. For example, Dagenias et

2We use the term project competencies to denote develop-
ers’ ability to act in a particular situation and context. This
depends on their knowledge, skill, and motivation, but the
precise differentiation of how each of these concepts con-
tribute to project competencies is beyond the scope of this
paper.

3http://www.eclipse.org/mylyn/,
http://code.google.com/p/hackystat/

al. [10] listed a number of obstacles facing developers join-
ing new projects through studying 18 developers in IBM.
Begel and Simon [2] found that communication and product
knowledge pose serious challenges for the newcomers because
they have not been trained for such tasks through their for-
mal education. Some studies went further to find ways to fa-
cilitate globalization and learning. For example, Mockus and
Weiss [24] proposed ways to separate large systems into inde-
pendently changeable chunks to reduce dependencies among
teams working on separate chunks. Sim and Holt [27] iden-
tified that mentors are an effective, though inefficient, way
to teach newcomers in the project naturalization process.

The alternative approach is to investigate the differences
between senior developers and novices. It has been argued
that individual differences among project personnel accounts
for the largest source of variation in project performance [9,
3]. Therefore explaining how the differences develop and
change over time, with the hope of finding approaches that
decrease the gap, appears to be a promising strategy. The
representation of knowledge organization and development
from cognitive science can provide an explanation for the
nature of these differences. Therefore, cognitive science was
used to understand the differences in mental structure be-
tween the experts and the novices in programming [9, 17].
Moreover, the striking differences were found that may be
influenced by culture [19] and motivation [7].

Furthermore, various tools [23, 8, 1, 14] attempt to aug-
ment developers’ knowledge of the project through visualiz-
ing or other ways of helping find the information developers
might seek.

However, the understanding of how developers learn is in
its infancy, therefore we will see a plethora of new ways to
speed-up developers’ learning and further understanding of
how humans learn. As Fischer [13] suggested, learning and
education are experiencing a period of profound transforma-
tion, the nature of problems is the systemic problems framed
and solved by transdisciplinary collaboration.

3. UNDERSTANDING LEARNING

We consider three types of challenges posed by the need to
understand and improve developer’s project competencies.

First, the communication and coordination in conjunction
with culture differences pose formidable obstacles to gaining
project competencies in offshoring or outsourcing. There-
fore, communication and culture are two critical factors that
need to be studied in software project context.

Second, the study of the learning trajectory of the most
productive developers, how they acquire their skills and re-
solve the central and complicated tasks, and what motivates
them may provide externalization of the way they acquired
expertise and be used for training others.

Third, the transfer from understanding to practice re-
quires suggesting approaches, tools, and resources to help
developers learn.

3.1 Cultureand Communication

Work in social psychology, cognitive psychology, and an-
thropology suggests that all learning takes place in settings
that have particular cultural and social norms and expecta-
tions and that these settings influence learning and knowl-
edge transfer in powerful ways [4]. People in different cul-
tures have strikingly different construals of the self, of oth-
ers, and of the interdependence of the two. These construals

can influence, and in many cases determine, the very nature
of individual experience, including cognition, emotion, and
motivation [19].

The fact that the practice should vary with culture has
been perceived by the experienced people in the field. For
example, an outsourcing manager in UK whose project is
outsourced from UK to India said: “There are different ef-
fects we must be aware of when dealing with an Indian team’s
attitude or culture and it is difficult to factor these in. For
example, we expect a high level of attrition, so ownership
has to be distributed among developers, which is not some-
thing we would do in the UK.” “From the India side, rapidly
developing innovative products in an exrpedient manner is a
less tangible skill.”

Communication occupies a large part of a developer’s pro-
gramming life. As Begel et al. [1] found in Microsoft, major-
ity of indicated developer needs involved discovering, meet-
ing, and keeping track of people, not just code. However,
there are many arguments that coordination poses a serious
problem. As an outsourcing manager in China who gets out-
sourcing tasks from Japan complained: “Often a very sim-
ple question needs to be bounced back and forth many times
(because of misunderstanding).” What are the developers’
information needs? For example, Ko et al [16] identified
the two types of most frequently sought information by de-
velopers that depended on their coworkers: “what have my
coworkers been doing?” and “in what situations do these
failures occur?” How developers communicate? An idea of
Social Mechanism of Interaction introduced by Schmidt et
al, emphasises the role of product itself in supporting the ar-
ticulation of the distributed activities of multiple actors [26].
Not only codebase [11], but also bug report forms [5] are
means by which the articulation work of the project can
be carried out. Similarly, Zhou and Mockus [29] discov-
ered the artifacts like MR /change repositories are important
and sometimes the only possible mechanism for developers
to communicate, in particular in the offshoring or trans-
generation scenarios, since there may be no traditional op-
portunities to communicate in many offshoring situations,
and a new generation of developers may be unable to com-
municate with original creators who have retired or died a
long time ago. What is the intrinsic nature of communica-
tions? Nakakoji et al. [25] highlighted that the communi-
cation should not be regarded as something to be increased
by itself, what matters is the quality of communication ex-
perience. In particular, the work introduced the concept of
attention conservation inspired by the Internet- and gadget-
paced lifestyle with people inundated with the flood of infor-
mation and communication media. An example of improved
quality of communications is described by Cataldo et al. [6]
where the most productive developers, changed their use of
electronic communication media over time, achieving higher
congruence between coordination requirements and coordi-
nation activities.

Overall, the study of communication and its best prac-
tices in global and multicultural software development is a
topic that would lead to better strategies to improve project
competencies.

3.2 Thelearning of experts

What is known about experts is important not because
all learners are expected to become experts, but because

the knowledge of expertise provides valuable insights into
what the results of effective learning look like [4].

First we need to understand the project practice trajecto-
ries that experts take. The issues include how a developer
starts from a novice and becomes an expert, how she grows
her expertise, and what kind of expertise she has to master
(and in what order) to become central [28]. In particular,
it’s interesting to investigate how developers proceed from
the role of a newcomer to the role of a core team member in
the OSS projects, since there is an absence of a hierarchical
organization, training plan, and a centralized environment
for people to be nurtured. We gave some hints in [28] about
how the developers grow their strength in terms of task dif-
ficulty and task centrality, but much broader and deeper
investigation is needed, for example, of what leads to that
trajectory.

Second, knowing how learners develop coherent structures
of information has been particularly useful to understand
the nature of organized knowledge that underlies effective
comprehension and thinking. For example, as we suggested
in [28], the difference between seniors and novices, might
lie in the ability to combine and apply what is learned to
perform more complex activities creatively and in new situa-
tions. Psychologists tried to aid software engineering through
programmer selection testing since the 1950’s. For example,
McKeithan et al. [20] observed that experts are able to re-
member language commands based on their position in the
structure of the language. Novices, not having an adequate
mental representation of the language structure, often use
mnemonic tricks to remember command names. Curtis [9]
considered the performance of someone tackling a compli-
cated programming task to be related to the richness of their
knowledge about the problem area. However, the initial at-
tempt had failed poorly, not because the principles and tech-
nologies of psychology were not up to the task, but because
the psychologists failed to adequately model the mental and
behavioral aspects of programming before selecting tests to
measure it [9]. Learning theory can now account for how
learners acquire skills to search a problem space and then
use these general strategies in many problem-solving situa-
tions [4].

Third, the most influential factor to affect learning might
be the motivation of a developer. In particular, the out-
sourcing, inhouse, and OSS developers are likely to be mo-
tivated and involved in the project for fundamentally differ-
ent reasons. Motivation is likely to vary substantially even
within outsourcing projects. For example, completely out-
sourced multi-year products are likely to elicit more commit-
ment from developers in the outsourcing organization than
projects outsourcing only a subset of the tasks or projects
that last only a few months. For example, a developer for
offshoring tasks from a site in India when being asked what
could make him happier said: “more new and interesting fea-
tures’. This difference appears to play a crucial role in moti-
vating people to learn, for example, an outsourcing manager
in Romania said, “we hire engineers who want to work in a
particular area, and this provides motivation for them.”

Overall, the advances in models of differences among in-
dividuals will come from a better understanding of the pro-
grammer knowledge base, and why and how the programmer
learns.

3.3 Recommending system for learning

Recommender systems are currently attracting attention

from software engineering researchers and practitioners. These

are tools that help developers and managers better to cope
with the huge amount of information faced in today’s soft-
ware projects, as noted in the announcement for the work-
shop on recommendation systems for software engineering?.

There has been substantial amount of work to provide
tools to improve developers’ learning and performance in

software projects. For example, Expertise Browser [23] presents

the relationships between developers and source code they
change to help determine experts for the code and developer
expertise profiles, Hipikat [8] provides access to the group
memory that is implicitly formed by all of the artifacts pro-
duced during the development for a software project, and
Ariadne as a plug-in for Eclipse offers developers visualiza-
tions of the source code authorship and the potential pres-
ence of coordination problems [12]. More recently, the de-
gree of knowledge model [14] adjusts developer expertise for
code that was later changed by others, Codebook [1] tries to
discover transitive relationships between people, code, bugs,
test cases, specifications, and related artifacts by mining all
kinds of software repositories.

We need better tools for the externalization and internal-
ization of project knowledge, because:

e typically the externalization of knowledge is not the
top priority in software projects, thus requiring non-
intrusive individual and project activity recording tools
with methods to extract meaning from such recorded
traces of activities of unmotivated actors.

e the motivation to have a long-term learning of the
project may be lacking, and necessitating tools and
methods to make newcomers effective on the timescales
of days or weeks not years.

According to Curtis [9], until the many sources of variation
among individuals have been compared in the same set of
data, it will not be possible to determine precisely which of
the potential sources is the most important predictor of suc-
cess in training programs or on the job. Also, as argued by
Mockus [21], some fundamental questions can be answered
only by considering the entire universe of publicly available
source code and its history. All kinds of repositories and
methods of analyzing them have sprung up recently to pro-
vide this kind of opportunity, for example, the data from
a project’s version history. More diverse and more detailed
repositories are bound to appear with corresponding meth-
ods and tools to analyze them in the future. The research
in this area will make it possible to measure aspects of hu-
man cognition in more detailed and more relevant ways and
that will open new possibilities to understand and improve
developer’s project competencies to satisfy the increasing
demands of the rapidly changing, multicultural, and global
software development.

4. CONCLUSION

This paper proposes that the prevalence of offshoring, out-
sourcing, and open source development have posed critical
challenges for developers to grow their project competence.
Understanding the nature of culture differences and com-
munication, investigating how experts learn and grow their
expertise, and proposing resources and tools to facilitate the

4ICSE’10 Workshop, Cape Town, South Africa

newcomers’ learning, are promising opportunities to address
challenges posed by these trends.

Improving this understanding has a particular significance
in light of changes in what is to be expected of training
newcomers in the global and multicultural software organi-
zations that have to take on new projects at a moment’s
notice. Furthermore, the proposed understanding will not
only borrow the developed concepts and approaches to be
used in software engineering, but will also contribute to a
more general scope — how humans learn.

5. ACKNOWLEDGMENTS

This work is supported by the National Basic Research
Program of China under grant No. 2009CB320703, the Sci-
ence Fund for Creative Research Groups of China under
grant No. 60821003 and the Nature Science Fundation of
China under grant No. 61073016.

6. REFERENCES

[1] A. Begel, K. Y. Phang, and T. Zimmermann.
Codebook: Discovering and exploiting relationships in
software repositories. In ICSE ’10: Proceedings of the
32th international conference on Software engineering,
pages 125-134, New York, NY, USA, 2010. ACM.

[2] A. Begel and B. Simon. Novice software developers, all
over again. In International Computing Education
Research Workshop, Sydney, Australia., 2008.

[3] B. Boehm. Software Engineering Economics.
Prentice-Hall, 1981.

[4] J. Bransford, A. Brown, and R. Cocking. How People
Learn: Brain, Mind, Experience and School. National
Academy Press, Washington, D.C., 2003.

[5] P. Carstensen. The bug report form, 1994.
http://cscw.dk/schmidt/papers/comic_d3.2.pdf.

[6] M. Cataldo, P. Wagstrom, J. Herbsleb, and K. Carley.
Identification of coordination requirements:
Implications for the design of collaboration and
awareness tools. In Conference on Computer
Supported Cooperative Work CSCW’06, Banft,
Alberta, Canada, 2006.

[7] J. D. Couger and R. A. Zawacki. Motivating and
Managing Computer Personnel. John Wiley & Sons,
Inc., New York, NY, USA, 1980.

[8] D. Cubranic and G. Murphy. Hipikat: A project
memory for software development. TSE, 31(6), 2005.

[9] B. Curtis. Fifteen years of psychology in software
engineering: Individual differences & cognitive science.
In ICSE’84, pages 97-106, 1984.

[10] B. Dagenais, H. Ossher, R. K. E. Bellamy, M. P.
Robillard, and J. P. de Vrie. Moving into a new
software project landscape. In ICSE 2010, pages
275-284, Cape Town, South Africa, May 1-8 2010.

[11] C. de Souza, J. Froehlich, and P. Dourish. Seeking the
source: software source code as a social and technical
artifact. In GROUP ’05: Proceedings of the 2005
international ACM SIGGROUP conference on
Supporting group work, pages 197-206, New York, NY,
USA, 2005. ACM.

[12] C. R. de Souza, S. Quirk, E. Trainer, and D. F.
Redmiles. Supporting collaborative software
development through the visualization of

socio-technical dependencies. In GROUP ’07:

Proceedings of the 2007 international ACM conference
on Supporting group work, pages 147-156, New York,

NY, USA, 2007. ACM.
[13] G. Fischer. Cultures of participation and social
computing: Rethinking and reinventing learning and

education. IEEFE International Conference on
Advanced Learning Technologies, 0:1-5, 2009.

[14] T. Fritz, J. Ou, G. C. Murphy, and E. Murphy-Hill. A

degree-of-knowledge model to capture source code
familiarity. In ICSE ’10: Proceedings of the 32th

international conference on Software engineering,
pages 385-394, New York, NY, USA, 2010. ACM.

[15] J. D. Herbsleb and A. Mockus. An empirical study of

speed and communication in globally-distributed

software development. IEEE Transactions on Software

Engineering, 29(6):481-494, June 2003.

[16] A. Ko, R. DeLine, and G. Venolia. Information needs

in collocated software development teams. In

29thInternational Conference on Software Engineering,

pages 344-353. ACM Press, May 20-26 2007.
[17] J. Koenemann and S. P. Robertson. Expert problem

solving strategies for program comprehension. In CHI
’91: Proceedings of the SIGCHI conference on Human

factors in computing systems, pages 125-130, New
York, NY, USA, 1991. ACM.

[18] J. Lave and E. Wenger. Situated Learning. Legitimate
Peripheral Participation. Cambridge University Press,

Cambridge, 1991.

[19] H. R. Markus and S. Kitayama. Culture and the self:

Implications for cognition, emotion, and motivation.
Psychological Review, 98(2):224-253, 1991.

[20] K. McKeithen, J. Reitman, H. Rueter, and S. Hirtle.
Knowledge organization and skill differences in
computer programmers. Cognitive Psychology,
13:307-325, 1981.

[21] A. Mockus. Amassing and indexing a large sample of
version control systems: towards the census of public
source code history. In 6th IEEE Working Conference

on Mining Software Repositories, May 16-17 2009.

[22] A. Mockus. Organizational volatility and its effects on
software defects. In ACM SIGSOFT / FSE, Santa Fe,

New Mexico, 2010.
[23] A. Mockus and J. Herbsleb. Expertise browser: A

quantitative approach to identifying expertise. In 2002

International Conference on Software Engineering,
pages 503-512, Orlando, Florida, May 19-25 2002.
ACM Press.

[24] A. Mockus and D. M. Weiss. Globalization by
chunking: a quantitative approach. IEEFE Software,
18(2):30-37, March 2001.

[25] K. Nakakoji, Y. Ye, and Y. Yamamoto. Comparison of

coordination communication and expertise
communication in software development: Motives,
characteristics, and needs. In Proceedings of
JSAI-isAI2009 Workshop on KCSD2009, pages
112-122. Springer Verlag, 2009.

[26] K. Schmidt and C. Simone. Coordination mechanisms:

Towards a conceptual foundation of cscw systems
design. The Journal of Collaborative Computing,
5:155-200, 1996.

[27] S. E. Sim and R. C. Holt. The ramp-up problem in

28]

29]

software projects: A case study of how software
immigrants naturalize. In ICSE 1998, pages 361-370,
1998.

M. Zhou and A. Mockus. Developer fluency:
Achieving true mastery in software projects. In ACM
SIGSOFT / FSE, Santa Fe, New Mexico, 2010.

M. Zhou, A. Mockus, and D. Weiss. Learning in
offshored and legacy software projects: How product
structure shapes organization. In ICSE Workshop on
Socio-Technical Congruence, Vancouver, Canada, May
19 2009.

