
Understanding and Predicting Effort in Software Projects

Audris Mockus and David M. Weiss
Avaya Labs Research

Department of Software Technology Research
233 Mt Airy Rd., Basking Ridge, NJ 07920

Ping Zhang
Avaya Labs Research

Department of Data Analysis Research
233 Mt Airy Rd., Basking Ridge, NJ 07920

Abstract

We set out to answer a question we were asked by soft-
ware project management: how much effort remains to be
spent on a specific software project and how will that effort
be distributed over time? To answer this question we pro-
pose a model based on the concept that each modification
to software may cause repairs at some later time and inves-
tigate its theoretical properties and application to several
projects in Avaya to predict and plan development resource
allocation. Our model presents a novel unified framework
to investigate and predict effort, schedule, and defects of a
software project. The results of applying the model confirm
a fundamental relationship between the new feature and de-
fect repair changes and demonstrate its predictive proper-
ties.

Key Words and Phrases: software changes, effort esti-
mation, project schedule, defect prediction

1. Introduction

Despite considerable research and practical experience
it is still a formidable challenge to understand and predict
what happens in a large software project. Even in cases
where some parties have a good understanding of the con-
sequences, the business pressures and lack of quantitative
evidence often results in misguided effort and time estima-
tion and faulty plans.

We focus on a problem of planning and managing devel-
opment resource allocation in large software projects. We
set out to answer very specific questions that were urgent in
several high-profile projects in Avaya:

1. How much effort remains to be spent on a specific soft-
ware project based on what we know now?

2. How will that effort be distributed over time?

To answer these questions we built a simple model of a soft-
ware project that describes the current state and possible

outcomes of a project based on various sources of informa-
tion ubiquitous in software projects, thereby decreasing the
need for the subjective judgment. This model proved to be
flexible enough to answer a wide range of important project
planning questions.

Previous work [1, 11, 13] has identified version con-
trol and problem tracking databases as a promising repos-
itory of information about a software project. We have cre-
ated methods and tools to retrieve, process, and model such
data at the fine level of Modification Requests (individual
changes to software) in order to understand the relationships
among process/product factors and key outcomes, such as,
quality, effort, and interval.

This work proposes ways to use the change data to un-
derstand and predict the state of a software project. We pro-
pose a model based on the concept that each modification
to software may cause repairs at some later time and inves-
tigate the model’s theoretical properties and report its ap-
plication to several projects in Avaya. The model assumes
the basic premise of change analysis, i.e., that the people
involved in a project leave traces of their work in the form
of modifications to the artifacts on which they work.

We start from our motivating questions in Section 2. Sec-
tion 3 describes ways to obtain data on software changes
and describes a method to estimate effort for a software
change. The model used to compose a project from soft-
ware changes is introduced in Section 4; Section 5 describes
the result of fitting such models to actual projects; Sec-
tion 6 considers ways to validate these empirical results,
and Section 7 outlines steps needed to model other software
projects. We conclude with literature review in Section 8
and discussion.

2. Motivation

We set out with the desire to answer the two basic ques-
tions stated in 1. These questions arose in two ongoing
projects and in two different contexts. In the first project the
key question was whether or not the release date would be
met. Would there be sufficient time and effort to complete

the features scheduled for the release, including repairing
any problems that arose during the development. In the sec-
ond project, a new release was about to go into the field. The
question was how much effort would be needed to support
it once it was released. Since resources devoted to repairing
problems, whether found in the field or earlier, are resources
that cannot be applied to completing features or to work on
other projects, the questions were critical for both projects
and for other projects that were awaiting resources.

Surprisingly, the planning in both projects did not take
into account that a project of larger magnitude might cause
more field problems and drain more resources than a smaller
project. Because of space constraints we report results only
for the first project.

2001.0 2001.5 2002.0 2002.5

0
10

20
30

40
50

Calendar Weeks

W
ee

kl
y

ef
fo

rt
(P

er
so

n
W

ee
ks

)

New effort
Actual Repair Effort
Predicted Repair Effort (Jan, 2001)
Predicted Repair Effort (Nov, 2001)

Figure 1. Actual and predicted repair effort.

The first project had an ambitious schedule. However,
after a few slips the question of when and what will be com-
plete arose. The project history is illustrated in Figure 1.
The figure shows the actual effort for implementing new
features (solid line), the effort of repairing defects (dashed
line), and two curves of predicted effort with predictions
done before the project started (dotted line) and on Novem-
ber 2001 (dash-dot line). The end of November is indicated
by a vertical line). The details of the method used to pro-
duce the prediction are described below. There was a ma-
jor release in May and new feature activities in the second
quarter of 2002 will be released later via software patches
or minor releases.

The predicted repair effort is fairly close to reality. How-
ever, the initial prediction at the start of the project, which
is based on data from previous projects, is slightly biased
because as it turns out, the new project has longer intervals
until defect repairs. The revised prediction done in Novem-
ber 2001 uses data from the current project. Our recommen-
dation made to the project in November 2001 was that the

May 2002 target for release could not be met unless the de-
velopment team refocused it’s resources to repair of existing
defects and away from the development of additional fea-
tures. The actual effort curves after November 2001 show
that the project apparently did exactly that, i.e., reducing the
scope of new functionality and focusing on repair.

The next section describes background information on
using change management and version control repositories
to obtain information on software changes that is used to
obtain and predict the the effort distribution in a software
project.

3. Background

The basic premise of analyzing software changes is that
software is created incrementally through a series of work
items, each potentially resulting in a change. Each incre-
mental change is recorded by a version control and, possi-
bly, problem tracking system. The data typically contains a
set of attributes such as the following:� The identity of the person making the change.� A short comment written by the author of the change.� The file(s) changed and the lines changed or the file(s)

contents before and after the change.

3.1. Work items in software projects

The purpose of the typical work item in a software or-
ganization is to make a change to a software entity. Work
items range in size from very large work items, such as re-
leases, to very small changes, such as a single delta (mod-
ification) to a file. A hierarchy of changes with associated
attributes is shown in Figure 2.

The source code of large software products is typically
organized into subsystems according to major functionality
(e.g., database, user interface, etc.). Each subsystem con-
tains a number of source code files and documentation.

The versions of the source code and documentation are
maintained using a version control system (VCS) such as
Concurrent Versioning System [4] commonly used for open
source software projects, or a popular commercial system,
such as ClearCase. We frequently deal with Source Code
Control System (SCCS) [15] and its descendants. Version
control systems operate over a set of source code files. An
atomic change, or delta, to the program text consists of the
lines that were deleted and those that were added in order
to make the change. Deltas are usually computed by a file
differencing algorithm (such as Unix diff), invoked by the
VCS, which compares an older version of a file with the
current version. Included with every delta is information

Time, Date delta

Feature

MRDescription

File, Module

Developer #lines add., del.

Software Release

Version
Control
System

Change
Management
System

Figure 2. Hierarchy of changes and associ-
ated data sources. Boxes with dashed lines
define data sources (VCS and CMS), boxes
with thick lines define changes, and boxes
with thin lines define properties of changes.
The arrows define an “is a part of” relation-
ship among changes, e.g., each MR is a part
of a feature.

such as the time the change was made, the person making
the change, and a short comment describing the change.

In addition to VCS, most projects employ a change re-
quest management system (CMS) that keeps track of in-
dividual requests for changes, which we call Modification
Requests (MRs). Whereas a delta is intended to keep track
of lines of code that are changed, an MR is intended to
be a change made for a single purpose. Each MR may
have many deltas associated with it. Some commonly
used problem tracking systems include ClearDDTS from
Rational, and the Extended Change Management System
(ECMS) [10]. Usually such systems associate a list of deltas
with each MR.

Modifications are typically made for one of the following
reasons.� Repairing previous changes that caused a failure dur-

ing testing or in the field.� Introducing new features to the existing system.� Restructuring the code to make it easier to understand
and maintain. (An activity more common in heavily
modified code, such as in legacy systems.)

To understand the activities occurring in a software de-
velopment project, it is critical to know which MRs belong
to each of these categories. Fortunately, this information
is often recorded in CMS systems as a field identifying
whether the MR represents a new feature or repairs a prob-
lem. Unfortunately, the quality of this classification varies
by project. In cases when it is unacceptably low for the

purpose of a particular analysis we use an automatic clas-
sification technique that uses words in the MR abstract to
determine the purpose of the MR [11].

Based on informal interviews in a number of software
development organizations within Lucent and Avaya we ob-
tained the following guidelines that are used to divide work
into MRs:

1. Work assignments that affect several subsystems (the
largest building blocks of functionality) are split into
distinct MRs so that each MR affects one subsystem;

2. A work assignment in a subsystem that is too much for
one person is further organized into several MRs so
that each one could be completed by a single person.

For practical reasons these guidelines are not strictly en-
forced, so that some MRs cross subsystem boundaries and
some have several people working on them.

A group of MRs associated with new software function-
ality is called a feature. A set of features and repairs con-
stitute a customer delivery, also known as a release. Put
another way, each release can be characterized as a base
system modified and extended by a set of MRs.

3.2. The value of analyzing changes

The analysis of software changes has a number of dis-
tinct benefits that may not be immediately obvious.� The data collection is nonintrusive, using only exist-

ing data and making analysis possible in commercial
projects that are usually under intense schedule pres-
sure and do not have time or resources to collect addi-
tional data.� Long history on past projects is available, enabling
comparison to what happened in the past and cus-
tomization and calibration of the methods to the exist-
ing environment. Nonetheless, one must be mindful of
changes to the environment and application that make
comparisons problematic.� The information is fine grained, at the MR/delta level.
Such fine level data collection on a large scale would
not be possible otherwise.� The information is complete, all parts of software, doc-
umentation, test cases that are under version control
are recorded.� The way the version control system is used rarely
changes, making data uniform over time.� Even small projects generate large volumes of changes
making it possible to detect even small effects statisti-
cally.

� The version control system is used as a standard part
of the project, so the development project is unaffected
by experimenter intrusion.

We believe that MRs are a very rich source of informa-
tion about software development and that their analysis can
evoke rewarding insights. Unfortunately drawing conclu-
sions about characteristics such as effort, quality and inter-
val is fraught with challenges. We describe some of these
challenges in the following sections. Basic to all of them is
that special care must always be taken to obtain information
on how version control and change management are used in
the project so as not to misinterpret the MR classifications
or misunderstand the process used to create, make progress
on, and record information about MRs.

3.3. Estimating change cost

While many attributes of changes are recorded by a ver-
sion control system, the cost it takes to perform a change is
impractical to collect. We consider cost to be paid developer
time. Often we use the term effort instead, but not to refer
to the actual effort or time it might take a programmer to
complete a change, because the actual effort might depend
on the programmer working unpaid or unrecorded overtime,
on doing tasks that are not directly related to completing
changes to software, such as attending meetings, learning,
or, on occasions, simply being more or less productive than
usual for other reasons.

While some change management systems, e.g., Sablime,
include effort related fields such as estimated and actual ef-
fort, we found them to be rarely used and even when used to
be extremely inaccurate. Interviews with developers in the
latter cases indicates that they often put a constant number
in such fields that does not depend on actual or estimated
effort.

By making a few simple assumptions we can overcome
this difficulty and determine, for example, what makes some
changes cost more than others, as shown in [1], where the
key idea is to tease out the extent of the contribution of var-
ious factors to the time a developer spends on a particular
change. Our assumptions are as follows.

1. The attributes of software changes such as the iden-
tity of the individual making the change, size of the
change, and types of tools used, determine the cost
it takes to complete a change (more examples are in,
e.g., [12]).

2. For each MR we have available the identity of the de-
veloper and the time when the MR was submitted, i.e.,
the time after which no work was done on that MR.

3. The work on the MR was done by the developer who
submitted the MR and that work was started a short

time before the submission of the MR: we used the
limit of two to ten weeks before its completion for the
start of an MR.

4. The developers on average spend approximately equal
amounts of paid time every calendar time period (in
a month, or in a week). The overtime was either not
recorded or not paid in the organizations we studied so
this assumption accurately reflects the cost of devel-
oper time to the organization.

5. It is possible to determine whether or not an MR is a
repair or new feature. Both attributes are typically kept
by a change management system, with the latter often
being somewhat inaccurate. We use methods described
in [11] to determine whether or not an MR is a repair.

Based on developer interviews in the commercial projects
we studied these assumptions held except for infrequent in-
stances when several developers contributed to the same
MR.

3.3.1 Change effort estimation algorithm

Using the preceding assumptions we have previously devel-
oped an algorithm for estimating effort for changes [1, 7].
The algorithm consists of an initialization stage where a
rough estimate of MR effort is obtained, followed by iter-
ations. A regression model is used in each iteration of the
algorithm to guide the refinement of the estimate. The code
to perform the analysis is published in [7].

In the initialization step of the algorithm a table for each
developer is completed (see Table 1). Table columns repre-
sent weeks, table rows represent MRs, and table cells repre-
sent the cost (developer paid time). The table is initialized
as follows.

1. Put zeros in cells where no work on the MR was done
(in weeks after the MR was completed and in weeks
before the work has started on the MR). The MR start
date is a parameter to the algorithm.

2. Put ones in column sums: we assume the monthly cost
for each developer to be constant for that developer
(see Table 1). The differences between developers are
obtained in the model fitting stage.

3. Fill the remaining cells in each column by equally di-
viding the column sum among nonzero cells in that
column.

4. Calculate the row sums by adding cell values in each
row.

Each iteration consists of the following steps.

Table 1. An example table of effort-per-MR-
per-week breakdown for one developer. The
?’s represent blank cells, whose values are
initially unknown.

W1 W2 W3 W4 W5 ����� Total
MR � 0 ? ? ? 0 ����� ?
MR � ? ? ? 0 0 ����� ?
MR � 0 0 ? ? ? ����� ?

...
...

...
...

...
...

...
Total 1 1 1 1 1 ����� 12

1. A regression is fitted using a number of attributes of
each MR as predictors and the fitted coefficients are
used to predict MR efforts.

2. The cell values in each row are rescaled to sum up to
the MR efforts predicted by the regression model.

3. The cell values in each column are rescaled to sum up
to the column sums (ones).

4. A new set of row sums is calculated from the cell val-
ues.

The iteration is repeated until convergence (we stopped
when the sum of the absolute values of the changes of all
the fitted regression coefficients becomes less than

�	� �	

).

The next section describes the project model we used, or
the way MRs relate to each other in a software project.

4. Project Model

The main goal of our project model is to predict the
amount and the distribution over time of the maintenance
effort. This may be done either at an advanced stage of
the development, for example, at code complete date, or it
could be done at an earlier stage based on the work break-
down structure.

To perform accurate prediction we need two basic prop-
erties from the model: the model has to relate the exist-
ing effort to future effort and it has to learn (incorporate in-
formation) from completed projects. We express these two
properties as the following postulates:

1. Every unit of new feature effort generates � units of
repair effort with each unit of repair effort having in-
dependent delay (the interval between the submission
of the new change and the submission of the repair)
with mean value of

���
.

The underlying thesis is that addition of a new fea-
ture may make the software violate its specifications
because the new feature is not implemented correctly

or because the existing functionality is exercised in a
novel way. Not all defects are likely to be detected
immediately because they may manifest themselves at
compilation, unit testing, integration, system testing,
or in the field.

2. The organization has completed some projects that are
similar to the project to be predicted, e.g., similar de-
velopment team, process, and software functionality.
This is to ensure that the parameters � and

�
, estimated

from previous projects, provide useful information to
the current project.

To use the model, the new feature effort is obtained by
the effort estimation techniques described above when a sig-
nificant amount of new features have been implemented, or
from a work breakdown structure if the prediction is done
earlier in the project.

As illustrated in Figure 3, the repair starts in parallel
with new feature development. The figure shows new ef-
fort (solid line), repair effort (dashed line), and predicted
repair effort (dotted line) for 11 releases. Notice that in
some earlier releases a significant portion of new function-
ality is implemented before the repair effort peaks and the
later releases had more iterative development model where
new feature effort is distributed more evenly throughout the
project.

In the following subsections, we will briefly describe a
probability model to fit the observed data. The likelihood
function is a statistical concept. It is defined as the theoret-
ical probability of observing the data at hand, given the un-
derlying model. Empirically, it is a function of the observed
data and unknown model parameters (� and

�
). Maximiz-

ing the likelihood with respect to these unknown parame-
ters will yield the so called Maximum Likelihood Estimate
(MLE) of these parameters (denoted as �� and ��). This is
a powerful statistical technique that allows us to generalize
linear regression procedures to arbitrary statistical models.

4.1. Project likelihood

Assume that the project starts at time
�

and we observe
defect and new feature effort up to time � . In most cases,
the link between a repair change and its root cause cannot
be observed. In other words, one does not know which of
the previously implemented features caused the bug, only
that one of them did. Borrowing terminology from stan-
dard probability theory, our postulate 1 in the simplest case
implies that the repair effort generated by one unit of fea-
ture effort follows a nonhomogeneous Poisson process with
intensity function � �	��������� ��� �

. Let ��� �! "$# denote the
repair effort during the time interval % & ��')(. The model im-
plies that �*� �! "$# follows a Poisson distribution with mean

�+� �, "-#/.0�21 �3�4� �65 �3�4� "87 . Future effort can be calculated by
setting

' .:9 , provided that one can estimate � and
�

.
Consider first the case when one feature is implemented

at time
�
. The data we observe can be described as ; units of

repair effort occurring at times <�= �?> .
@��������� ; . Let ACB =8D be
the order statistics of the repair times. Then the likelihood
function, i.e., the joint probability distribution, of observing
such data isE 1$�*� F� � #/.0; � A B =8D .G<H= � <I=KJL<I=8M � �N> .
3�������I� ; 7 .� �/O�P QSR TVU �XW WY=8Z � �[� ���,\?] � (1)

The parameters � and
�

can be estimated numerically by
maximizing the likelihood function.

Next, let us consider the more realistic case of observing^ �-_ units of new feature effort at time �a` , and � \?] units of
repair effort at times < = . Some slightly more tedious algebra
shows that the negative log-likelihood is:b �-_ � ^ �-_2c
 5 � �4� B �?�[�-_ Ded 5 ��� F� � #�fhg@i[1$� � 725

b \e] � \?] fhg@ikjl b`nm � _So \] � ��� B \e]H�[�-_ D?pq �
(2)

4.2. Limitation of the model

A problem occurs when applying the model to unfin-
ished projects. Let us consider the simplest case of observ-
ing one unit of new feature effort at time

�
and one unit of

repair effort at time < and the observation interval is % �r� � (.
When < is close to � �@s , one can show that the MLEs are��utwvK9 and �� twv � ! A similar argument can be made
in more general settings. What this shows is that under
fairly general assumptions it is impossible to predict what
will happen in an isolated project until it reaches its late
stages unless some additional information is available. We
consider several ways to address this shortcoming of MLE:

1. Perform prediction in a project using estimates for one
or more parameters obtained on completed projects.

2. Impose an informative prior distribution.

3. Use data from other completed projects.

4. Observe relationships between repairs and new fea-
tures causing them.

The first approach is the simplest and works best when
the completed projects are similar to the project under con-
sideration. The second approach is to use a Bayesian esti-
mation technique instead of an MLE. An informative prior

would eliminate the impossible infinite values of the esti-
mates. However, this would require an elicitation step so
that an appropriate prior could be obtained from people in-
timately familiar with the project. While this may be the
only option for a new project, it is possible to use data from
completed projects in a more mature organization using, for
example, a hierarchical model. Finally, modifying the prob-
lem tracking process to record the change causing the repair
would provide the data needed to produce a usable estimate.
Here we report the results based on the first approach.

5. Empirical Results

We fitted the model on a family of software projects each
representing a release of a large real time high-availability
software system. We considered 11 releases developed over
more than 9 years with contributions of 494 developers via
more than 27,000 MRs.

The older releases were used to fit the parameters of the
project model and the estimated parameters were then used
on a current release to obtain predictions of the future de-
velopment effort.

The project used the Sablime system for MR tracking
and a proprietary SCCS based system for version control.
Certain parts of the project also use ClearCase for version
control.

We consider a slightly simplified version of the devel-
opment process, as follows. The developers are assigned
a new feature or a defect to work on. In case of defects,
they investigate the problem, make necessary changes and
submit an MR for integration. In case of new features, addi-
tional tasks such as low level design and design review are
performed prior to coding. After coding is complete the MR
is submitted for integration by the developer. The code in-
spection is done afterward and any issues are resolved with
additional MRs. If an MR is opened by a tester, it may take
some time until someone is assigned to work on it and even-
tually starts working on it. In this case the MR open time
may significantly precede the time when the work started.
Often developers will find an issue to work on in the regu-
lar course of their activities. They may investigate the issue,
complete the necessary changes in their private workspaces,
and then open and immediately submit an MR for integra-
tion. In this case opening an MR does not precede the start
of work. Consequently we could not use the MR open time
as an accurate indicator of when the work was started.

The MR submit time, on the other hand, fairly precisely
determines the completion of the work on an MR, because
developers have no reason to keep an MR open after it is
complete. Once an MR is submitted, it goes next to system
integration build and then to system test. Such builds occur
once a week or once every two weeks for the projects under
investigation.

5.1. Estimation of change effort

As a baseline we assumed MRs to take at most two to ten
weeks of calendar time counting backward from the date of
submission. For each developer we created a table as in
Table 1 with columns representing weeks and rows repre-
senting MRs. Initially the table is filled with zeros except
for the four weeks up to the week when an MR was sub-
mitted. The nonzero cells are filled column by column, di-
viding unit weekly effort equally among the nonzero cells
in the column. This corresponds to the initialization step of
the algorithm described in [7, 1].

To refine these estimates we used several factors that
we could measure of which we selected the ones that were
shown to affect MR effort in previous studies, e.g., [1, 7],
or we thought might influence MR effort:� Developer. Login of the individual who worked on and

submitted the MR.� MR type. We classified MRs into new development
(referred to as new features and enhancements in the
considered projects), repair, and field problems. The
last class corresponded to repairs done in response to a
customer problem reported on released software.� MR status. We discriminated among MRs that had sta-
tus “nochange” indicating that no change to the code
was done as a result of the MR, versus the rest.� MR size. Logarithm of the number of lines added by
the MR.� MR size/complexity. Logarithm of the number of
deltas constituting the MR.

The estimated regression coefficients and their 95% con-
fidence intervals are presented in Table 2. The regression
equation by which the coefficients affect effort is as follows:x 1 Effort 7 .y1 delta v
 78z|{~} 1 lines v
 7az3��}� z@�!�?�$���S�!�e�a� B W@�)�e� � W
�I� D-M z �!�$� � B W@�e� D-M z|� _ �N����� Bn� ` �?�V� D }Y

`�m � developers �r� `$�/1$� ���|�,�$�� /��¡ ` 7 � (3)

where � is an indicator function. The non-field repair MR
resulting in a code change is the baseline for the coefficients¢ W@�)�e� � W
�I� , ¢ W@�e� , and ¢ � ` �?�V� . For example, a new feature
MRs take

� F�£ �)¤¦¥
3� §
times the effort of comparable repair

MRs.
Table 2 shows that the effects are in the expected direc-

tion, with field problems and large MRs requiring more ef-
fort. New feature MRs are more difficult in the considered
projects than repair MRs. This is in contrast to the find-
ing in [1], where defect repairs required more effort. The

Table 2. Results from fitting effort model.
Coefficient Estimate p-val 95% CI¢ W@�)�e� � W
�I� -0.11 0.244 % 5 �	� ¨3�r�)�r� �@©
(¢ W3�e� 0.39 0.000 % �	� s@¨r�)�r��§@§,(¢ � ` �?�V� 0.69 0.000 % �	� §@ªr�)�r� ©3s,(
delta: ¢ � -0.11 0.069 % 5 �	� s3s��)�r� �r
I(
lines: ¢ � 0.15 0.000 % �	�V
!�r�)�r��s��
(

rest of the predictors are not significant in predicting effort.
The difference can be explained by the fact that [1] consid-
ers a different, even larger, software product. Furthermore,
in [1] the algorithm used MR open time as an indication of
when the work on an MR was started. Because new feature
MRs are more likely to be opened after most of the work on
the feature has been completed, e.g., low level design and
prototyping, and repair MRs are more likely to be opened
before the work has even started, this may have biased the
estimates in [1] to make repair MRs appear more difficult
than new feature MRs.

5.2. Fitting software project model

We can now use the calculated MR effort to model the
project. We chose to discretize project time into work weeks
because the effort estimation used weeks and because it
simplified calculations. The total project effort spent dur-
ing the week �a` was divided into three types: new effort^ �-_ that was spent on MRs submitted that week that were
classified as “new”, repair effort � �-_ corresponding to re-
pair MRs, and field effort « � _ corresponding to field repair
MRs.

Figure 3 illustrates the new and repair effort time series
for the considered projects. The figure also shows a third
curve that represents prediction of the repair effort as de-
scribed in Section 5.3.

The maximum likelihood estimator for the completed
projects in Table 3 gives

�¬
weeks delay for repair and ­

weeks of delay for field repairs. The ratio of total repair
before field release to new feature effort in a project is

@� ­
and for the total field problem repair effort to new feature
effort is

3��®
. Please note, that these are not efforts for indi-

vidual MRs, but rather total efforts spent in the project on
new functionality, repair, and repair of field problems.

Table 3. MLE estimates for the delay and re-
pair to new feature effort ratio.

Type Delay Delay CI Ratio Ratio CI
Regular Repair 19 %
�©	�)s�
�(1.36 %
@��s���
3� §
(
Field problem 41 % ¨@¨	� ­ ©�(1.7 %
@� ­ ��s,(
Here we observe fairly small 95% confidence intervals

Calendar Weeks

E
ffo

rt
(P

er
so

n
W

ee
ks

)

0

10

20

30

40

1994 1996 1998 2000 2002

r1 r7

r2

0

10

20

30

40

r8
0

10

20

30

40

r3 r9

r4

0

10

20

30

40

r10
0

10

20

30

40

r5 r11

r6

New Effort
Actual Repair Effort
Predicted Repair Effort

Figure 3. Effort trend broken by the type of change for several releases.

in terms of delay and in terms of the effort ratio. This gives
us confidence that these estimates would accurately predict
the repair effort and timing of the future projects.

Note, that total effort to implement new features repre-
sents only one quarter of the total effort in the considered
software projects with repair of problems found in the field
constituting almost half of the total effort. This is partially
caused by the fact that the field repair MR is about twice as
difficult (

� F�£ ¯ ¤) than a comparable non-field repair MR. The
results for these projects confirm and make more precise
the oft-heard statement that the later one finds a problem
the more difficult it is to fix.

5.3. Prediction of repair effort in a project

Armed with the delay and ratio estimates from historic
projects we can proceed to prediction of the repair effort.
Our key assumption is that we approximately know the new
feature implementation schedule and resources devoted to
accomplish it. Such a plan is typically available at the
end of the project planning stage before the development
starts. Of course, the actual schedule might differ from the
planned schedule because of a number factors, including
the unplanned drain of resources to repair already released
projects.

We applied our method halfway through the ongoing
project in November 2001, for the project that was started

in the beginning of the year and had a major release in May
of the subsequent year. Consequently, we had information
(new and repair MRs) of the already completed part of the
project. In Figure 3 we illustrate the predicted repair effort
using project model coefficients estimated in the previous
section: repair delay of

� �� .
!¬
weeks and repair to new

ratio of ��°.
@� ¨@ª
. According to the project model, the

predicted intensity of repair effort at time � is simply an in-
tegral ± �F ^ 1²< 7 �� ��	� �´³�,\ �|< . Given our discretization of time
into weeks the predicted repair effort for week �)µ becomes
the sum ¶ �]Io �$· ^ ��] ��21 �@�´³���] 5 �3�´³� B �] M � D 7 .

Such prediction does not take into account the fact that
each project has a slightly different relationship between re-
pairs and the new features. Consequently, if the prediction
is done at the advanced stages of the project, as was the
case in our study, valuable information about the project
is not used. To address the problem we need to estimate
project specific parameters � and

�
. However, because of

reasons described in Section 4.2, it is impossible to estimate
both parameters using MLE. We tried the options described
in 4.2 and got similar results, but because of space consider-
ations we report results from the simplest first option where
we find a new estimate just for

�
, keeping �� estimated from

previous projects. The estimate for

,�@�

done in Novem-
ber 2001 was 48 weeks, much larger than for other projects.
Figure 1 illustrates the performance of the repair schedule
prediction for release r11. The first predictor uses �� � �� ob-
tained from other projects and the second uses project spe-
cific estimate for the delay of 48 weeks.

Clearly, both predictors follow the shape of the repair
activity, with the first predictor having an overly optimistic
view about when the repairs will be completed and the sec-
ond predictor possibly having an overly pessimistic view
(the predicted repair curve continues well beyond July,
2002, the time of this writing). Only time will tell if the
second predictor is in fact, overly pessimistic.

The overly optimistic performance of the first predictor
that relies on the historic projects is not difficult to explain.
The project under study was extremely ambitious, larger
than any project undertaken before, involving new types of
functionality. At the same time, the project schedule was
highly optimistic for the amount of work that needs to be
done, leading to various process experiments where work
on numerous new features simultaneously was initiated and
the job of system integration and testing was left for later
stages, partly because there were not sufficient resources to
do new development and sufficient testing at the same time.
As is clear from the illustration, the strategy had a mixed
success, with repair effort being delayed as compared to
other releases.

6. Validation

Because the defects are discovered at the compilation,
unit test, integration, system test, and field phases, it may
make sense to consider time until repair to be a mixture
distribution, each representing the phase at which the defect
is discovered.

We chose to separate defects into field and non-field re-
pair because it was possible to perform that separation and
because we expected the time until discovery of field defect
to be much longer than the time until discovery of other
defects. The results in Section 5 indicate that, indeed, the
field problems take twice as long to manifest themselves as
regular defects.

At first glance it may seem that the assumption that only
new feature changes generate repair changes is too restric-
tive. After all, fixes sometimes cause problems too. From
the modeling perspective there are two ways to deal with
this issue. The defects that cause other defects were caused
by the new feature (it may even be the original code), so
such a non-first generation repair could be attributed to the
new feature change. This, of course, would increase the
overall delay parameter and may require using a distribu-
tion for the delay that has a heavier tail than the Exponential
distribution that we used here. We have tried using Weibull,
Pareto, and Gamma distributions in the project model, but
the results do not bring any surprises or significant lessons
to be worth reporting. In the second approach, a complete
likelihood may be written for the model where both new
features and repair generate repair. We have done so, but it
is computationally more complex and we have yet to apply
it to real data.

We tried to incorporate all the uncertainties that we are
aware of into our project model so the variability of the es-
timates would reflect the known uncertainties. More specif-
ically, while estimating MR effort we considered several
possible values for how long before MR submit time the
work on MR may start. We considered 2, 4, 6, and 10
weeks and obtained effort estimates for each case. The re-
sults in Tables 2 involve bootstrap (a statistical term refer-
ring to calculating estimates based on multiple subsamples
of the data) by sampling this parameter and by selecting 20
non-overlapping subsets of developers.

Table 3 incorporates the MR open time uncertainty by
showing the mean and the confidence interval of the esti-
mates taken over the four possible MR open times and over
all 10 releases previous to R11.

Of course, from the project planning perspective the ul-
timate validity is the accuracy with which the repair effort
and schedule could be predicted as illustrated in Figure 1.

7. Project Model Scenario

The utility of the presented model in other projects can
be shown if the model is used in project planning or project
understanding. In this section we outline the steps needed to
apply the model in a software project. There are four basic
stages: change data extraction, change data validation, and
change and project modeling. In the data extraction stage
access to the project systems is obtained and raw change
data is extracted. In case of home-grown tools, it may be
necessary to interview a person responsible for tool support
to understand the structure and functionality of such sys-
tems.

The most important is data validation stage which starts
from cleaning the raw change data to eliminate adminis-
trative, automatic, post-preprocessor, and other computer-
generated changes. This leads to data described in Figure 2.
The quality of attributes is then assessed and un- or auto-
populated attributes and remaining system generated arti-
facts are eliminated. When engaging a new project it is im-
portant to interview a sample of developers and testers. The
interview involves review of recent changes done by the in-
terviewee to to illustrate the actual development process and
to understand/validate the meaning various attribute values.

The change data is then augmented by modeling change
effort [1] as described above, and, if needed, change pur-
pose [11] or risk [12]. This stage also requires validation de-
scribed in the references. It is worth pointing out, that at this
point a number of important things have been learned about
the software organization, including relative efforts for re-
pair and new feature changes, effort per average change,
change and effort trends over time and for different projects.

Once the relevant information on software changes is ob-
tained, a project model is fitted for historic releases as de-
scribed in Section 5.2. While we divided repair changes
into post-release and pre-release repair, other classification
might be desirable in other organizations. For example,
classifying changes due to unit, feature, integration, and
system test. For each type of repair and each project, the
fitted values represent relative amount of repair effort and
an average time until repair. Investigating these estimates
for different projects it is important to note the variability
and any patterns where the size or other characteristics of
the release appear to affect the amount or delay of the re-
pair effort.

Finally, the model may be used to predict repairs and
answer other project planning questions for the upcoming
project as described in Section 5.3.

8. Related Work

Our work closely relates mainly to two areas in software
engineering: cost and schedule estimation and risk assess-

ment. The software cost estimation may be roughly or-
ganized into expert and algorithmic techniques to estimate
software cost and schedule.

The expert based techniques are typically best suited for
projects that are not too different from projects completed
in the past and where the estimator has extensive experi-
ence of estimation with these past projects (a good review
of expert estimation techniques may be found in [9]). The
main drawback is the subjective and non-transparent nature
of the estimation process that makes it harder to justify the
estimates. Often, it is also difficult to find estimators with
the appropriate experience in the application and the envi-
ronment in which it is developed. Our method is largely
complementary to expert estimation, for example, expert
estimates on the new feature effort and schedule can be fed
into our model to predict the repair (and total) effort and
schedule before the development has started. To help ex-
perts come up with more precise estimates they can inspect
actual new feature and repair effort schedules for the past
projects as shown in Figure 3.

Algorithmic techniques such as COCOMO [2, 3] may
be used if the key predictors, such as size of the project,
can be reliably estimated in advance and calibrated with
past projects. The main drawback is that the size of the
project (an input to the algorithm) may be more difficult to
estimate than the cost (the output of the algorithm). While
COCOMO is typically used to estimate the entire cost of
the project, it may be possible to calibrate the regression
used in COCOMO to estimate new feature and repair effort
separately. As with expert-based techniques the estimates
for new feature effort could be fed into our model and the
historic MR effort data could be used to calibrate the CO-
COMO.

The risk assessment literature covers a number of issues,
but the part most related to our work predicts the number of
defects remaining in software during testing [14, 5, 6, 16].
There are two key differences with our work: we do not
predict defects based on observed defect counts, but rather
predict defect effort schedule based on observed new fea-
ture changes. The second difference is that testing mod-
els assume that the software does not change during test-
ing, which is clearly not true as indicated by Figure 3.
Rather, our model assumes that new features are continu-
ously added to the software (albeit at a time varying rate)
and generate defects and need for defect repair effort later
on.

9. Discussion

We find it somewhat surprising that the relationship be-
tween new features and repair in a software project could be
reasonably described using just two parameters: the propor-
tion of repair effort and delay until repair. Encouragingly,

these parameters vary little across projects in a single orga-
nization making them suitable for the planning of upcoming
projects.

While our focus was fairly narrow: to predict repair ef-
fort and its distribution over time given the new feature
effort, the project model can be applied in more general
settings. For example, it could predict the number of de-
fects based on the number and properties of new features as
in [12], or predict the defects in a software module as in [8].
Furthermore a classical testing problem [5] of when to stop
testing by predicting the number of defects remaining in the
code base could be solved using the same model.

Since the model uses data that is available in virtually
any large software project it is an appealing model for com-
mercial software settings where all process overhead, in-
cluding time-consuming data collection, are treated with
skepticism.

In addition to providing a framework for answering a
number of important project planning questions, the project
model may help gain better insights into completed projects
and may help a software organization better understand its
strengths and shortcomings. One significant benefit that we
expected and observed, was better understanding of a soft-
ware projects constraints by people who are not directly in-
volved in development, yet have to take important planning
and resource allocation decisions.

As an example, the model applied to the projects we
studied confirmed and quantified the customary wisdom
that the later a defect is found the harder it is to correct (and
the longer it takes to correct it). Such quantification makes
it easier to justify expending resources earlier in the project
to detect and correct defects before they reach the field. We
leave it to future research to quantify the efficiency of var-
ious detection techniques, such as code inspections, so that
one could estimate just how much effort should be expended
on such a technique to make it worthwhile.

Finally, much of our ability to model projects was a
result of making relatively few and minimal assumptions
about how the work in a software development project pro-
ceeds based on our observations of the development pro-
cess. Our observations and subsequent analysis focused on
what changes were made and how they were made, i.e., how
people worked to change the code, rather than focusing on
properties of the code. Although we believe that analyzing
code properties has its place, we also believe that analyzing
changes is a rich source of insight that is usually not given
proper attention.

Acknowledgments

We would like to thank all the people in Avaya, Lu-
cent, and AT&T who provided information directly (via
interviews) or indirectly (by working on the products un-

der study.) In particular we thank S. Brown, M. Flores, D.
Frost, R. Hackbarth, N. Harrison, M. Hazerodt, J. Maran-
zano, O. Mascarenhas, E. Moritz, S. Muchow, J. Palfra-
man, J. Payseur, D. Sokoler, D. Turgeon and others for pro-
viding insight on development process, development tasks,
project management and other aspects of the studied soft-
ware projects.

References

[1] D. Atkins, T. Ball, T. Graves, and A. Mockus. Using version
control data to evaluate the impact of software tools: A case
study of the version editor. IEEE Transactions on Software
Engineering, 28(7):625–637, July 2002.

[2] B. Boehm. Software Engineering Economics. Prentice-Hall,
1981.

[3] B. W. Boehm, B. Clark, E. Horowitz, and et al. Cost models
for future software life cycle processes: Cocomo 2.0. Annals
of Software Engineering, 1(1):1–24, November 1995.

[4] P. Cedeqvist and et al. CVS Manual. May be fond on:
http://www.cvshome.org/CVS/.

[5] S. R. Dalal and C. L. Mallows. When should one stop testing
software? Journal of American Statist. Assoc, 83:872–879,
1988.

[6] A. L. Goel. Software reliability models: Assumptions, limi-
tations and applicability. IEEE Trans. Software Engineering,
SE-11(12), 1985.

[7] T. Graves and A. Mockus. Identifying productivity drivers
by modeling work units using partial data. Technometrics,
43(2):168–179, May 2001.

[8] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Predicting
fault incidence using software change history. IEEE Trans-
actions on Software Engineering, 26(2), 2000.

[9] M. Jørgensen. A review of studies on expert estimation of
software development effort. Journal of Systems and Soft-
ware, 2002. submitted.

[10] A. K. Midha. Software configuration management for the
21st century. Bell Labs Technical Journal, 2(1), Winter
1997.

[11] A. Mockus and L. G. Votta. Identifying reasons for software
change using historic databases. In International Confer-
ence on Software Maintenance, pages 120–130, San Jose,
California, October 11-14 2000.

[12] A. Mockus and D. M. Weiss. Predicting risk of software
changes. Bell Labs Technical Journal, 5(2):169–180, April–
June 2000.

[13] A. Mockus and D. M. Weiss. Globalization by chunking: a
quantitative approach. IEEE Software, 18(2):30–37, March
2001.

[14] J. Musa, A. Iannino, and K. Okumoto. Software Reliability:
Measurement, Prediction, Application. McGrawHill, New
York, 1987.

[15] M. Rochkind. The source code control system. IEEE Trans.
on Software Engineering, 1(4):364–370, 1975.

[16] N. D. Singpurwalla and S. P. Wilson. Statistical Methods in
software Engineering: Reliability and Risk. Springer Series
in Statistics. Springer-Verlag, New York, 1999.

