
Software Changes: from Insights to Solutions

Audris Mockus

Avaya Labs Research

Basking Ridge, NJ 07920

http://www.research.avayalabs.com/user/audris

Outline

✦ Background

✧ Motivation

✧ Software project repositories

✧ How to use change data

✦ A model of software project

✧ Predicting schedule

✧ Predicting post-release defects

✦ Discussion

2 Audris Mockus Software Changes: from Insights to Solutions 2002

Motivation

✦ To quantify software production: make informed trade-offs

between schedule, quality, cost.

✧ Visibility: where/when effort is spent, defects introduced

✧ Predictability: what will be the impact of choosing technology,

processes, organization

✧ Controllability: trade-offs between time to market, features, quality,

and staffing

3 Audris Mockus Software Changes: from Insights to Solutions 2002

Example: Release Dates

2001.0 2001.5 2002.0 2002.5

0
10

20
30

40
50

Calendar Weeks

W
ee

kly
 e

ffo
rt

(P
er

so
n

W
ee

ks
)

New effort
Actual Repair Effort
Predicted Repair Effort (Jan, 2001)
Predicted Repair Effort (Nov, 2001)

4 Audris Mockus Software Changes: from Insights to Solutions 2002

Background: Illustration

✦ Software is created by changes

✦ Changes are tracked

Time, Date delta

Feature

MRDescription

File, Module

Developer #lines add., del.

Software Release Patch

Version
Control
System

Change
Management
System

5 Audris Mockus Software Changes: from Insights to Solutions 2002

Background: Details

✦ Software is created by changes

✦ Changes are tracked by version control/configuration
management systems (VCS/CMS)

✧ A delta is a single checkin (ci/commit/edput) representing an atomic

modification of a single file with following attributes

✧ File, Date, Developer (resolver), Comment

✧ Other attributes:

✧ Size (number of lines added,deleted)

✧ Lead time (interval from start to completion)

✧ Purpose (Fix/New)

✧ Reporter, date reported

✦ Modification Request (MR): a group delta from a logical change

✦ Patch, Release: a group of MRs released to users
6 Audris Mockus Software Changes: from Insights to Solutions 2002

Approach

✦ Use properties and relationships among changes to model

phenomena in software projects

✧ Obtain change properties from project repositories (VCS/CMS)

✧ Model staffing/schedule/quality relationships to decide upon future

changes

✧ The product/code is simply a dynamic superposition of changes, and

is not of particular interest otherwise

7 Audris Mockus Software Changes: from Insights to Solutions 2002

Why Use Project Repositories?
✧ The data collection is non-intrusive (using only existing data minimizes

overhead)

✧ Long history of past projects enables historic comparisons, calibration,

and immediate diagnosis in emergency situations.

✧ The information is fine grained: at MR/delta level

✧ The information is complete: everything under version control is

recorded

✧ The data are uniform over time

✧ Even small projects generate large volumes of changes: small effects are

detectable.

✧ The version control system is used as a standard part of a project, so the

development project is unaffected by observer
8 Audris Mockus Software Changes: from Insights to Solutions 2002

Pitfalls of Using Project Repositories

✦ Different process: how work is broken down into work items may

vary across projects

✦ Different tools: CVS, ClearCase, SCCS, ...

✦ Different ways of using the same tool: under what circumstances

the change is submitted, when the MR is created

✦ The main challenge: create change based models of key problems

in software engineering

9 Audris Mockus Software Changes: from Insights to Solutions 2002

Existing Models

✦ Predicting the quality of a patch [7]

✦ Globalization: move development where the resources are:

✧ What parts of the code can be independently maintained [8]

✧ Who are the experts to contact about any section of the code [5]

✦ Effort: estimate MR effort and benchmark process

✧ What makes some changes hard [3]

✧ What processes/tools work [1, 2]

✧ What are OSS/Commercial process differences [4]

✦ Project models

✧ Release schedule [9]

✧ Release readiness criteria

✧ Release quality

10 Audris Mockus Software Changes: from Insights to Solutions 2002

Change Data Methodology: Extraction

✦ Get access to the systems

✦ Extract raw data

✧ change table, developer table. (SCCS: prs, ClearCase: cleartool -lsh,

CVS:cvs log), write/modify drivers for other CM/VCS/Directory

systems

✧ Interview the tool support person (especially for home-grown tools)

✦ Do basic cleaning

✧ Eliminate administrative, automatic, post-preprocessor changes

✧ Assess the quality of the available attributes (type, dates, logins)

✧ Eliminate un- or auto-populated attributes

✧ Eliminate remaining system generated artifacts

11 Audris Mockus Software Changes: from Insights to Solutions 2002

Change Data Methodology: Validation
✦ Interview a sample of developers, testers, project manager, tech.

support

✧ Go over recent change(s) the person was involved with

✧ to illustrate the actual process (what is the nature of the work item,

why you got it, who reviewed it)

✧ to understand/validate the meaning various attribute values: (when

was the work done, for what purpose, by whom)

✧ to gather additional data: effort spent, information exchange with

other project participants

✧ to add experimental/task specific questions

✦ Augment MR properties via relevant models: purpose [6],
effort [1], risk [7]

✦ Validate and clean recorded and modeled data

✦ Iterate
12 Audris Mockus Software Changes: from Insights to Solutions 2002

Change Data Methodology: Project Sample
✦ Languages: Java, C, SDL, C � � , JavaScript, XML, ... Platforms: proprietary, unix’es,

Windows, VXWorks, Domains: embedded, high-availability, network, user interface Size:
from largest to small

Type Added KLines KDelta Years Developers Locations

Voice switching software 140,000 3,000 19 6,000 5

Enterprise voice switching 14,000 500 12 500 3

Multimedia call center 8,000 230 7 400 3

Wireless call processing 7,000 160 5 180 3

Web browser 6,000 300 3 100/400

OA&M system 6,000 100 5 350 3

Wireless call processing 5,000 140 3 340 5

Enterprise voice messaging 3,000 87 10 170 3

Enterprise call center 1,500 60 12 130 2

Optical network element 1,000 20 2 90 1

IP phone with WML browser 800 6 3 40 1

Web sever 200 15 3 15/300

13 Audris Mockus Software Changes: from Insights to Solutions 2002

Software Project Expressed through Changes

✦ Project consists of two types of changes

✧ business driven changes — planned new feature/platform changes

✧ consequences — repair changes due to incorrect implementation of

new features or unanticipated interaction or novel exercise of “base”

functionality

✦ Assume “modification � � repairs later”

✧ A unit of effort spent on new “planned” changes generates � units of

repair effort with delay �

✧ Choose appropriate distribution for � and �
✧ ��� � �� 	 	 �
 ��

✧ Times until each unit of repair effort is spent are IID

�� �� � �
 �
 �� �� ���

14 Audris Mockus Software Changes: from Insights to Solutions 2002

Model Fit: 11 Releases

Calendar Weeks

Ef
for

t (
Pe

rso
n W

ee
ks

)

0

10

20

30

40

1994 1996 1998 2000 2002

r1 r7

r2

0

10

20

30

40

r8
0

10

20

30

40

r3 r9

r4

0

10

20

30

40

r10
0

10

20

30

40

r5 r11

r6

New Effort
Actual Repair Effort
Predicted Repair Effort

15 Audris Mockus Software Changes: from Insights to Solutions 2002

Model Details

✦ Notation

✧ Denote � � � the number of new feature effort units at time � � , and,

similarly � � � for fixes. Denote � �	�
��
 to be repair effort units on

interval ��� ��� �
✧ Project data (� � � and � � �) are observed until time �

✧ No direct links between changes are observed

✦ The � �� � � Likelihood � is

�
��� � � � !#" $ % �" � � & � ' (*) + � ,.- / 0 � �21 � �

3 �
' 3 � - / 0

�4 � �5 3 �
!6" $ % 3 �" � � &

16 Audris Mockus Software Changes: from Insights to Solutions 2002

Release Planning

✦ Goal: Model tradeoffs between release feature content, schedule,

staffing needs, and quality

✧ stakeholders provide new feature content, release dates, staffing, and

quality goals

✧ repair (and total) schedule is predicted

✧ new feature content, release dates, staffing, and quality goals are

revised

✦ Results

✧

�� shows the fraction of fix to new effort.

✧

� �� shows mean time until fix.

✧ � �� �� ��� 	 � � ��
 �
��

 �
 �� ��
 �
�� ��� �� � �

✧ � �� � �� 	� ��
 �
��

 �
 � � � �

�� ��� � � � �

17 Audris Mockus Software Changes: from Insights to Solutions 2002

Predicted Schedule: Ongoing Project

2001.0 2001.5 2002.0 2002.5

0
10

20
30

40
50

Calendar Weeks

W
ee

kly
 e

ffo
rt

(P
er

so
n

W
ee

ks
)

New effort
Actual Repair Effort
Predicted Repair Effort (Jan, 2001)
Predicted Repair Effort (Nov, 2001)

18 Audris Mockus Software Changes: from Insights to Solutions 2002

Application: Release Quality Criteria

✦ Goal: what criteria need to be satisfied for a release to match user

expectations?

✦ Inputs

✧ Schedule of defects and release dates in previous projects

✧ Number of unsolved MRs in previous and current project at GA date

✧ Schedule of deployment

Eff
ort

 (P
ers

on
Mo

nth
s)

0

5

10

15

20

25

30
V 5.6 V 6.0

19 Audris Mockus Software Changes: from Insights to Solutions 2002

Application: Testing Effort

✦ Goal: predict the amount and schedule of testing effort

✧ CM data is used to identify testers, management

✧ Relationships between development and testing from historic

projects are used for planning new projects

Calendar Weeks

Ef
fo

rt
(P

er
so

n
M

on
th

s)

Dvlpr=488.96, per MR=0.121

Tstr=464.6, per MR=0.086

Mngr=186.57, per MR=0.032

Release=1140.13 per MR=0.182

0

5

10

15

20

25

30

2002 2002.5 2003

V 6.0

Dvlpr=57.36, per MR=0.151

Tstr=90.28, per MR=0.145

Mngr=18.71, per MR=0.028

Release=166.35 per MR=0.24

V 6.0.1

2002 2002.5 2003

Dvlpr=208.58, per MR=0.233

Tstr=232.31, per MR=0.168

Mngr=120.8, per MR=0.07

Release=561.69 per MR=0.316

2002 2002.5 2003

V 6.0.2

20 Audris Mockus Software Changes: from Insights to Solutions 2002

Discussion

✦ Unified project model: predicting schedule, quality, and effort

✧ Input: information that is known or should be known in advance

✧ Output: likely consequences

✦ Change data represents a vast amount of untapped resources

✦ Remaining challenges

✧ Broader application and validation of existing models

✧ New models to address other problems of practical/theoretical

significance

✧ What information developers would easily and accurately enter in a

CM systems?

✧ What is the “sufficient statistic” for a software change?

21 Audris Mockus Software Changes: from Insights to Solutions 2002

References
[1] D. Atkins, T. Ball, T. Graves, and A. Mockus. Using version control data to evaluate the impact of software tools: A case study of the

version editor. IEEE Transactions on Software Engineering, 28(7):625–637, July 2002.

[2] D. Atkins, A. Mockus, and H. Siy. Measuring technology effects on software change cost. Bell Labs Technical Journal, 5(2):7–18,

April–June 2000.

[3] James D. Herbsleb, Audris Mockus, Thomas A. Finholt, and Rebecca E. Grinter. An empirical study of global software development:

Distance and speed. In 23nd International Conference on Software Engineering, pages 81–90, Toronto, Canada, May 12-19 2001.

[4] Audris Mockus, Roy T. Fielding, and James Herbsleb. Two case studies of open source software development: Apache and mozilla.

ACM Transactions on Software Engineering and Methodology, 11(3):1–38, July 2002.

[5] Audris Mockus and James Herbsleb. Expertise browser: A quantitative approach to identifying expertise. In 2002 International

Conference on Software Engineering, pages 503–512, Orlando, Florida, May 19-25 2002. ACM Press.

[6] Audris Mockus and Lawrence G. Votta. Identifying reasons for software change using historic databases. In International Conference

on Software Maintenance, pages 120–130, San Jose, California, October 11-14 2000.

[7] Audris Mockus and David M. Weiss. Predicting risk of software changes. Bell Labs Technical Journal, 5(2):169–180, April–June

2000.

[8] Audris Mockus and David M. Weiss. Globalization by chunking: a quantitative approach. IEEE Software, 18(2):30–37, March 2001.

[9] Audris Mockus, David M. Weiss, and Ping Zhang. Understanding and predicting effort in software projects. In 2003 International

Conference on Software Engineering, Portland, Oregon, May 3-10 2003. ACM Press. Accepted.

Abstract
Software systems are changed constantly throughout their lifetime. Understanding relationships
between different types of changes and the effects of these changes on the success of software
projects is essential to make progress in Software Engineering. By using novel methods and tools to
retrieve, process, and model data from ubiquitous change management databases at the granularity
of Modification Requests (individual changes to software) we have gained insights regarding the
relationships between process/product factors and key outcomes, such as, quality, effort, and
interval. Here we introduce ways to use changes to understand and predict the state of an entire
software project. We propose a model based on the premise that each modification to software will
cause changes later and investigate its theoretical properties and applications to several software
projects. The model presents a unified framework to investigate and predict effort, schedule, and
defects of a software project. The results of applying the model confirm a fundamental relationship
between the new feature and defect repair changes and demonstrate model’s predictive capabilities
in large software projects.

Bio

Audris Mockus

Avaya Labs Research

233 Mt. Airy Road

Basking Ridge, NJ 07920

ph: +1 908 696 5608, fax:+1 908 696 5402

http://mockus.org, mailto:audris@mockus.org,

picture:http://mockus.org/images/small.gif

Audris Mockus conducts research of complex dynamic systems. He designs data mining methods to

summarize and augment the system evolution data, interactive visualization techniques to inspect,

present, and control the systems, and statistical models and optimization techniques to understand

the systems. Audris Mockus received B.S. and M.S. in Applied Mathematics from Moscow Institute

of Physics and Technology in 1988. In 1991 he received M.S. and in 1994 he received Ph.D. in

Statistics from Carnegie Mellon University. He works at Software Technology Research Department

of Avaya Labs. Previously he worked at Software Production Research Department of Bell Labs.

